Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemftr.b |
|- B = ( Base ` K ) |
2 |
|
cdlemftr.h |
|- H = ( LHyp ` K ) |
3 |
|
cdlemftr.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
cdlemftr.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
1 2 3 4
|
cdlemftr2 |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) ) |
6 |
|
3simpa |
|- ( ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) -> ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) ) |
7 |
6
|
reximi |
|- ( E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) ) |
8 |
5 7
|
syl |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) ) |