Metamath Proof Explorer


Theorem cdlemftr1

Description: Part of proof of Lemma G of Crawley p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h =/= tr f." (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemftr.b
|- B = ( Base ` K )
cdlemftr.h
|- H = ( LHyp ` K )
cdlemftr.t
|- T = ( ( LTrn ` K ) ` W )
cdlemftr.r
|- R = ( ( trL ` K ) ` W )
Assertion cdlemftr1
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) )

Proof

Step Hyp Ref Expression
1 cdlemftr.b
 |-  B = ( Base ` K )
2 cdlemftr.h
 |-  H = ( LHyp ` K )
3 cdlemftr.t
 |-  T = ( ( LTrn ` K ) ` W )
4 cdlemftr.r
 |-  R = ( ( trL ` K ) ` W )
5 1 2 3 4 cdlemftr2
 |-  ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) )
6 3simpa
 |-  ( ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) -> ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) )
7 6 reximi
 |-  ( E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= X ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) )
8 5 7 syl
 |-  ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X ) )