Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemftr.b |
|- B = ( Base ` K ) |
2 |
|
cdlemftr.h |
|- H = ( LHyp ` K ) |
3 |
|
cdlemftr.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
cdlemftr.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
1 2 3 4
|
cdlemftr3 |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) ) |
6 |
|
simpl |
|- ( ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) -> f =/= ( _I |` B ) ) |
7 |
|
simpr1 |
|- ( ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) -> ( R ` f ) =/= X ) |
8 |
|
simpr2 |
|- ( ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) -> ( R ` f ) =/= Y ) |
9 |
6 7 8
|
3jca |
|- ( ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) -> ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= Y ) ) |
10 |
9
|
reximi |
|- ( E. f e. T ( f =/= ( _I |` B ) /\ ( ( R ` f ) =/= X /\ ( R ` f ) =/= Y /\ ( R ` f ) =/= Y ) ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= Y ) ) |
11 |
5 10
|
syl |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( R ` f ) =/= X /\ ( R ` f ) =/= Y ) ) |