| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg8.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg8.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdlemg8.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdlemg8.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemg8.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemg8.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) |
| 8 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> ( F ` ( G ` P ) ) = P ) |
| 9 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
| 11 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> F e. T ) |
| 12 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> G e. T ) |
| 13 |
1 4 5 6
|
cdlemg6 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` Q ) ) = Q ) |
| 14 |
9 10 11 12 8 13
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> ( F ` ( G ` Q ) ) = Q ) |
| 15 |
8 14
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) ) |
| 16 |
15
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) = P -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) ) ) |
| 17 |
16
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) -> ( F ` ( G ` P ) ) =/= P ) ) |
| 18 |
7 17
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) =/= P ) |