Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
1 2 3 4 5 6 7
|
cdlemg17pq |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) ) |
9 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
11 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
12 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> G e. T ) |
13 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> Q =/= P ) |
14 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) |
15 |
1 2 3 4 5 6 7
|
cdlemg17b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( G ` Q ) = P ) |
16 |
9 10 11 12 13 14 15
|
syl321anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F e. T /\ G e. T /\ Q =/= P ) /\ ( ( G ` Q ) =/= Q /\ ( R ` G ) .<_ ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( G ` Q ) = P ) |
17 |
8 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` Q ) = P ) |