Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) |
9 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> K e. HL ) |
10 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> P e. A ) |
11 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> F e. T ) |
13 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> Q e. A ) |
14 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ Q e. A ) -> ( F ` Q ) e. A ) |
15 |
11 12 13 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` Q ) e. A ) |
16 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |
17 |
11 12 10 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` P ) e. A ) |
18 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> P =/= Q ) |
19 |
4 5 6
|
ltrn11at |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> ( F ` P ) =/= ( F ` Q ) ) |
20 |
11 12 10 13 18 19
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` P ) =/= ( F ` Q ) ) |
21 |
20
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` Q ) =/= ( F ` P ) ) |
22 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) |
23 |
2 4
|
hlatexch4 |
|- ( ( ( K e. HL /\ P e. A /\ ( F ` Q ) e. A ) /\ ( Q e. A /\ ( F ` P ) e. A ) /\ ( P =/= Q /\ ( F ` Q ) =/= ( F ` P ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) ) -> ( P .\/ Q ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) |
24 |
9 10 15 13 17 18 21 22 23
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( P .\/ Q ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) |
25 |
24
|
eqcomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) |
26 |
25
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) ) |
27 |
26
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) ) |
28 |
8 27
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) |