Metamath Proof Explorer


Theorem cdlemg18d

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
Assertion cdlemg18d
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) e. A )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
9 simp21r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T )
10 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q )
11 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) =/= P )
12 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R ` G ) .<_ ( P .\/ Q ) )
13 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
14 1 2 3 4 5 6 7 cdlemg17b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) = Q )
15 8 9 10 11 12 13 14 syl123anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) = Q )
16 15 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` P ) ) = ( F ` Q ) )
17 16 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ ( F ` Q ) ) )
18 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T )
19 1 2 3 4 5 6 7 cdlemg17bq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` Q ) = P )
20 8 18 9 10 11 12 13 19 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` Q ) = P )
21 20 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) = ( F ` P ) )
22 21 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) = ( Q .\/ ( F ` P ) ) )
23 17 22 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( P .\/ ( F ` Q ) ) ./\ ( Q .\/ ( F ` P ) ) ) )
24 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) )
25 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
26 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
27 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) )
28 1 2 3 4 5 6 cdlemg11aq
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( F ` ( G ` Q ) ) =/= Q )
29 24 25 26 18 9 27 28 syl123anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) =/= Q )
30 21 29 eqnetrrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` P ) =/= Q )
31 1 2 3 4 5 6 7 cdlemg17irq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) = ( F ` P ) )
32 8 18 9 10 11 12 13 31 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) = ( F ` P ) )
33 16 32 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` Q ) .\/ ( F ` P ) ) )
34 33 27 eqnetrrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) )
35 eqid
 |-  ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ Q ) ./\ W )
36 1 2 3 4 5 6 7 35 cdlemg18c
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` Q ) ) ./\ ( Q .\/ ( F ` P ) ) ) e. A )
37 24 25 26 18 10 30 34 36 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` Q ) ) ./\ ( Q .\/ ( F ` P ) ) ) e. A )
38 23 37 eqeltrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) e. A )