| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemg1.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemg1.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemg1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemg1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemg1.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemg1.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemg1.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemg1.d | 
							 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemg1.e | 
							 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemg1.g | 
							 |-  G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemg1.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 8 9 10 11
							 | 
							cdleme50ltrn | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> G e. T )  | 
						
						
							| 13 | 
							
								
							 | 
							simpll1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> f e. T )  | 
						
						
							| 15 | 
							
								12
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> G e. T )  | 
						
						
							| 16 | 
							
								
							 | 
							simpll2 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> ( f ` P ) = Q )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme17d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( G ` P ) = Q )  | 
						
						
							| 19 | 
							
								18
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> ( G ` P ) = Q )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> ( f ` P ) = ( G ` P ) )  | 
						
						
							| 21 | 
							
								2 5 6 11
							 | 
							cdlemd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ f e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( f ` P ) = ( G ` P ) ) -> f = G )  | 
						
						
							| 22 | 
							
								13 14 15 16 20 21
							 | 
							syl311anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) /\ ( f ` P ) = Q ) -> f = G )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) -> ( ( f ` P ) = Q -> f = G ) )  | 
						
						
							| 24 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) -> ( G ` P ) = Q )  | 
						
						
							| 25 | 
							
								
							 | 
							fveq1 | 
							 |-  ( f = G -> ( f ` P ) = ( G ` P ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eqeq1d | 
							 |-  ( f = G -> ( ( f ` P ) = Q <-> ( G ` P ) = Q ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) -> ( f = G -> ( f ` P ) = Q ) )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							impbid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ f e. T ) -> ( ( f ` P ) = Q <-> f = G ) )  | 
						
						
							| 29 | 
							
								12 28
							 | 
							riota5 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ f e. T ( f ` P ) = Q ) = G )  | 
						
						
							| 30 | 
							
								29
							 | 
							eqcomd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> G = ( iota_ f e. T ( f ` P ) = Q ) )  |