Description: This theorem can be used to shorten F = hypothesis that have the form of the conclusion. TODO: fix comment. (Contributed by NM, 16-Apr-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg1.b | |- B = ( Base ` K ) |
|
cdlemg1.l | |- .<_ = ( le ` K ) |
||
cdlemg1.j | |- .\/ = ( join ` K ) |
||
cdlemg1.m | |- ./\ = ( meet ` K ) |
||
cdlemg1.a | |- A = ( Atoms ` K ) |
||
cdlemg1.h | |- H = ( LHyp ` K ) |
||
cdlemg1b.u | |- U = ( ( P .\/ Q ) ./\ W ) |
||
cdlemg1b.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
||
cdlemg1b.e | |- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
||
cdlemg1b.f | |- F = ( iota_ f e. T ( f ` P ) = Q ) |
||
cdlemg1b.t | |- T = ( ( LTrn ` K ) ` W ) |
||
Assertion | cdlemg1bOLDN | |- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg1.b | |- B = ( Base ` K ) |
|
2 | cdlemg1.l | |- .<_ = ( le ` K ) |
|
3 | cdlemg1.j | |- .\/ = ( join ` K ) |
|
4 | cdlemg1.m | |- ./\ = ( meet ` K ) |
|
5 | cdlemg1.a | |- A = ( Atoms ` K ) |
|
6 | cdlemg1.h | |- H = ( LHyp ` K ) |
|
7 | cdlemg1b.u | |- U = ( ( P .\/ Q ) ./\ W ) |
|
8 | cdlemg1b.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
|
9 | cdlemg1b.e | |- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
|
10 | cdlemg1b.f | |- F = ( iota_ f e. T ( f ` P ) = Q ) |
|
11 | cdlemg1b.t | |- T = ( ( LTrn ` K ) ` W ) |
|
12 | eqid | |- ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
|
13 | 1 2 3 4 5 6 7 8 9 12 11 10 | cdlemg1b2 | |- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) ) |