Metamath Proof Explorer


Theorem cdlemg1ci2

Description: Any function of the form of the function constructed for cdleme is a translation. TODO: Fix comment. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l
|- .<_ = ( le ` K )
cdlemg1c.a
|- A = ( Atoms ` K )
cdlemg1c.h
|- H = ( LHyp ` K )
cdlemg1c.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdlemg1ci2
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F = ( iota_ f e. T ( f ` P ) = Q ) ) -> F e. T )

Proof

Step Hyp Ref Expression
1 cdlemg1c.l
 |-  .<_ = ( le ` K )
2 cdlemg1c.a
 |-  A = ( Atoms ` K )
3 cdlemg1c.h
 |-  H = ( LHyp ` K )
4 cdlemg1c.t
 |-  T = ( ( LTrn ` K ) ` W )
5 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F = ( iota_ f e. T ( f ` P ) = Q ) ) -> F = ( iota_ f e. T ( f ` P ) = Q ) )
6 eqid
 |-  ( iota_ f e. T ( f ` P ) = Q ) = ( iota_ f e. T ( f ` P ) = Q )
7 1 2 3 4 6 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ f e. T ( f ` P ) = Q ) e. T )
8 7 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F = ( iota_ f e. T ( f ` P ) = Q ) ) -> ( iota_ f e. T ( f ` P ) = Q ) e. T )
9 5 8 eqeltrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F = ( iota_ f e. T ( f ` P ) = Q ) ) -> F e. T )