Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemg1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemg1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemg1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemg1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemg1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemg1.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemg1.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdlemg1.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
10 |
|
cdlemg1.g |
|- G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
11 |
|
cdlemg1.t |
|- T = ( ( LTrn ` K ) ` W ) |
12 |
|
cdlemg1.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemg1b2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = G ) |
14 |
13
|
cnveqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' F = `' G ) |
15 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme51finvtrN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' G e. T ) |
16 |
14 15
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' F e. T ) |