Description: Value of a translation in terms of an associated atom. cdleme48fvg with simpler hypotheses. TODO: Use ltrnj to vastly simplify. (Contributed by NM, 23-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg2inv.h | |- H = ( LHyp ` K ) |
|
cdlemg2inv.t | |- T = ( ( LTrn ` K ) ` W ) |
||
cdlemg2j.l | |- .<_ = ( le ` K ) |
||
cdlemg2j.j | |- .\/ = ( join ` K ) |
||
cdlemg2j.a | |- A = ( Atoms ` K ) |
||
cdlemg2j.m | |- ./\ = ( meet ` K ) |
||
cdlemg2j.b | |- B = ( Base ` K ) |
||
Assertion | cdlemg2fv | |- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` P ) .\/ ( X ./\ W ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2inv.h | |- H = ( LHyp ` K ) |
|
2 | cdlemg2inv.t | |- T = ( ( LTrn ` K ) ` W ) |
|
3 | cdlemg2j.l | |- .<_ = ( le ` K ) |
|
4 | cdlemg2j.j | |- .\/ = ( join ` K ) |
|
5 | cdlemg2j.a | |- A = ( Atoms ` K ) |
|
6 | cdlemg2j.m | |- ./\ = ( meet ` K ) |
|
7 | cdlemg2j.b | |- B = ( Base ` K ) |
|
8 | eqid | |- ( ( p .\/ q ) ./\ W ) = ( ( p .\/ q ) ./\ W ) |
|
9 | eqid | |- ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) = ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) |
|
10 | eqid | |- ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) |
|
11 | eqid | |- ( x e. B |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) ) .\/ ( x ./\ W ) ) ) ) , x ) ) = ( x e. B |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
|
12 | 7 3 4 6 5 1 2 8 9 10 11 | cdlemg2fvlem | |- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` P ) .\/ ( X ./\ W ) ) ) |