Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2id.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg2id.a |
|- A = ( Atoms ` K ) |
3 |
|
cdlemg2id.h |
|- H = ( LHyp ` K ) |
4 |
|
cdlemg2id.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
cdlemg2id.b |
|- B = ( Base ` K ) |
6 |
|
simp111 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> K e. HL ) |
7 |
|
simp112 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> W e. H ) |
8 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( P e. A /\ -. P .<_ W ) ) |
9 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( Q e. A /\ -. Q .<_ W ) ) |
10 |
|
simp113 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> F e. T ) |
11 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( F ` P ) = Q ) |
12 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
13 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
14 |
|
eqid |
|- ( ( P ( join ` K ) Q ) ( meet ` K ) W ) = ( ( P ( join ` K ) Q ) ( meet ` K ) W ) |
15 |
|
eqid |
|- ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) = ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) |
16 |
|
eqid |
|- ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) |
17 |
|
eqid |
|- ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) |
18 |
5 1 12 13 2 3 4 14 15 16 17
|
cdlemg2dN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) ) |
19 |
6 7 8 9 10 11 18
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) ) |
20 |
19
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( F ` X ) = ( ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) ` X ) ) |
21 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> X e. B ) |
22 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> P = Q ) |
23 |
17
|
cdleme31id |
|- ( ( X e. B /\ P = Q ) -> ( ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) ` X ) = X ) |
24 |
21 22 23
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( P ( join ` K ) Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P ( join ` K ) Q ) ) -> y = ( ( P ( join ` K ) Q ) ( meet ` K ) ( ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ( join ` K ) ( ( s ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t ( join ` K ) ( ( P ( join ` K ) Q ) ( meet ` K ) W ) ) ( meet ` K ) ( Q ( join ` K ) ( ( P ( join ` K ) t ) ( meet ` K ) W ) ) ) ) ( join ` K ) ( x ( meet ` K ) W ) ) ) ) , x ) ) ` X ) = X ) |
25 |
20 24
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F ` P ) = Q /\ X e. B ) /\ P = Q ) -> ( F ` X ) = X ) |