Metamath Proof Explorer


Theorem cdlemg2l

Description: TODO: FIX COMMENT. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h
|- H = ( LHyp ` K )
cdlemg2inv.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg2j.l
|- .<_ = ( le ` K )
cdlemg2j.j
|- .\/ = ( join ` K )
cdlemg2j.a
|- A = ( Atoms ` K )
cdlemg2j.m
|- ./\ = ( meet ` K )
cdlemg2j.u
|- U = ( ( P .\/ Q ) ./\ W )
Assertion cdlemg2l
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ U ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h
 |-  H = ( LHyp ` K )
2 cdlemg2inv.t
 |-  T = ( ( LTrn ` K ) ` W )
3 cdlemg2j.l
 |-  .<_ = ( le ` K )
4 cdlemg2j.j
 |-  .\/ = ( join ` K )
5 cdlemg2j.a
 |-  A = ( Atoms ` K )
6 cdlemg2j.m
 |-  ./\ = ( meet ` K )
7 cdlemg2j.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 1 2 3 4 5 6 7 cdlemg2k
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ G e. T ) -> ( ( G ` P ) .\/ ( G ` Q ) ) = ( ( G ` P ) .\/ U ) )
9 8 3adant3l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( G ` P ) .\/ ( G ` Q ) ) = ( ( G ` P ) .\/ U ) )
10 9 fveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( F ` ( ( G ` P ) .\/ ( G ` Q ) ) ) = ( F ` ( ( G ` P ) .\/ U ) ) )
11 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( K e. HL /\ W e. H ) )
12 simp3l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> F e. T )
13 simp3r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> G e. T )
14 simp2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( P e. A /\ -. P .<_ W ) )
15 3 5 1 2 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
16 11 13 14 15 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
17 16 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( G ` P ) e. A )
18 eqid
 |-  ( Base ` K ) = ( Base ` K )
19 18 5 atbase
 |-  ( ( G ` P ) e. A -> ( G ` P ) e. ( Base ` K ) )
20 17 19 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( G ` P ) e. ( Base ` K ) )
21 simp2r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( Q e. A /\ -. Q .<_ W ) )
22 3 5 1 2 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) )
23 11 13 21 22 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) )
24 23 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( G ` Q ) e. A )
25 18 5 atbase
 |-  ( ( G ` Q ) e. A -> ( G ` Q ) e. ( Base ` K ) )
26 24 25 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( G ` Q ) e. ( Base ` K ) )
27 18 4 1 2 ltrnj
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. ( Base ` K ) /\ ( G ` Q ) e. ( Base ` K ) ) ) -> ( F ` ( ( G ` P ) .\/ ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) )
28 11 12 20 26 27 syl112anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( F ` ( ( G ` P ) .\/ ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) )
29 1 2 3 4 5 6 7 cdlemg2fv2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) /\ F e. T ) -> ( F ` ( ( G ` P ) .\/ U ) ) = ( ( F ` ( G ` P ) ) .\/ U ) )
30 11 14 21 16 12 29 syl131anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( F ` ( ( G ` P ) .\/ U ) ) = ( ( F ` ( G ` P ) ) .\/ U ) )
31 10 28 30 3eqtr3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ U ) )