| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg4.a |
|- A = ( Atoms ` K ) |
| 3 |
|
cdlemg4.h |
|- H = ( LHyp ` K ) |
| 4 |
|
cdlemg4.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
cdlemg4.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( F ` ( G ` P ) ) = P ) |
| 7 |
6
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( G ` P ) ( join ` K ) ( F ` ( G ` P ) ) ) = ( ( G ` P ) ( join ` K ) P ) ) |
| 8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> K e. HL ) |
| 9 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> G e. T ) |
| 11 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
| 12 |
1 2 3 4
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 13 |
12
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( G ` P ) e. A ) |
| 14 |
9 10 11 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( G ` P ) e. A ) |
| 15 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> P e. A ) |
| 16 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 17 |
16 2
|
hlatjcom |
|- ( ( K e. HL /\ ( G ` P ) e. A /\ P e. A ) -> ( ( G ` P ) ( join ` K ) P ) = ( P ( join ` K ) ( G ` P ) ) ) |
| 18 |
8 14 15 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( G ` P ) ( join ` K ) P ) = ( P ( join ` K ) ( G ` P ) ) ) |
| 19 |
7 18
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( G ` P ) ( join ` K ) ( F ` ( G ` P ) ) ) = ( P ( join ` K ) ( G ` P ) ) ) |
| 20 |
19
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( ( G ` P ) ( join ` K ) ( F ` ( G ` P ) ) ) ( meet ` K ) W ) = ( ( P ( join ` K ) ( G ` P ) ) ( meet ` K ) W ) ) |
| 21 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> F e. T ) |
| 22 |
9 10 11 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 23 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 24 |
1 16 23 2 3 4 5
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( R ` F ) = ( ( ( G ` P ) ( join ` K ) ( F ` ( G ` P ) ) ) ( meet ` K ) W ) ) |
| 25 |
9 21 22 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( R ` F ) = ( ( ( G ` P ) ( join ` K ) ( F ` ( G ` P ) ) ) ( meet ` K ) W ) ) |
| 26 |
1 16 23 2 3 4 5
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P ( join ` K ) ( G ` P ) ) ( meet ` K ) W ) ) |
| 27 |
9 10 11 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( R ` G ) = ( ( P ( join ` K ) ( G ` P ) ) ( meet ` K ) W ) ) |
| 28 |
20 25 27
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( F ` ( G ` P ) ) = P ) -> ( R ` F ) = ( R ` G ) ) |