| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg4.a |
|- A = ( Atoms ` K ) |
| 3 |
|
cdlemg4.h |
|- H = ( LHyp ` K ) |
| 4 |
|
cdlemg4.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
cdlemg4.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
cdlemg4.j |
|- .\/ = ( join ` K ) |
| 7 |
|
cdlemg4b.v |
|- V = ( R ` G ) |
| 8 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 9 |
1 6 8 2 3 4 5
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
| 10 |
9
|
3com23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
| 11 |
7 10
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> V = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
| 12 |
11
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P .\/ V ) = ( P .\/ ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) ) |
| 13 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P e. A /\ -. P .<_ W ) ) |
| 15 |
1 2 3 4
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 16 |
15
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( G ` P ) e. A ) |
| 17 |
16
|
3com23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( G ` P ) e. A ) |
| 18 |
|
eqid |
|- ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) |
| 19 |
1 6 8 2 3 18
|
cdleme0cp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) e. A ) ) -> ( P .\/ ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) = ( P .\/ ( G ` P ) ) ) |
| 20 |
13 14 17 19
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P .\/ ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) = ( P .\/ ( G ` P ) ) ) |
| 21 |
12 20
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P .\/ V ) = ( P .\/ ( G ` P ) ) ) |