| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg4.a |
|- A = ( Atoms ` K ) |
| 3 |
|
cdlemg4.h |
|- H = ( LHyp ` K ) |
| 4 |
|
cdlemg4.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
cdlemg4.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
cdlemg4.j |
|- .\/ = ( join ` K ) |
| 7 |
|
cdlemg4b.v |
|- V = ( R ` G ) |
| 8 |
1 2 3 4 5 6 7
|
cdlemg4b2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( ( G ` P ) .\/ V ) = ( P .\/ ( G ` P ) ) ) |
| 9 |
1 2 3 4 5 6 7
|
cdlemg4b1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P .\/ V ) = ( P .\/ ( G ` P ) ) ) |
| 10 |
8 9
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( ( G ` P ) .\/ V ) = ( P .\/ V ) ) |