Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg7.b |
|- B = ( Base ` K ) |
2 |
|
cdlemg7.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemg7.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemg7.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemg7.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> K e. HL ) |
7 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> W e. H ) |
8 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( X e. B /\ -. X .<_ W ) ) |
9 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
10 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
11 |
1 2 9 10 3 4
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
12 |
6 7 8 11
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
13 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> r e. A ) |
15 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. r .<_ W ) |
16 |
14 15
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r e. A /\ -. r .<_ W ) ) |
17 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) |
18 |
|
simp131 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> F e. T ) |
19 |
|
simp132 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> G e. T ) |
20 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) |
21 |
1 2 9 10 3 4 5
|
cdlemg7fvN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( r e. A /\ -. r .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
22 |
13 16 17 18 19 20 21
|
syl123anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
23 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( P e. A /\ -. P .<_ W ) ) |
24 |
|
simp133 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` P ) ) = P ) |
25 |
2 3 4 5
|
cdlemg6 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( r e. A /\ -. r .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` r ) ) = r ) |
26 |
13 23 16 18 19 24 25
|
syl123anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` r ) ) = r ) |
27 |
26
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) = ( r ( join ` K ) ( X ( meet ` K ) W ) ) ) |
28 |
22 27 20
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = X ) |
29 |
28
|
rexlimdv3a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( F ` ( G ` X ) ) = X ) ) |
30 |
12 29
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` X ) ) = X ) |