| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg7fv.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemg7fv.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemg7fv.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemg7fv.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemg7fv.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemg7fv.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemg7fv.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 8 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> G e. T ) |
| 10 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 11 |
2 5 6 7
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 13 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) |
| 14 |
2 5 6 7 1
|
cdlemg7fvbwN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ G e. T ) -> ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) |
| 15 |
8 13 9 14
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) |
| 16 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> F e. T ) |
| 17 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( P .\/ ( X ./\ W ) ) = X ) |
| 18 |
6 7 2 3 5 4 1
|
cdlemg2fv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( G ` X ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) |
| 19 |
8 10 13 9 17 18
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( G ` X ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) |
| 20 |
19
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) ./\ W ) = ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) ) |
| 21 |
|
simp2rl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> X e. B ) |
| 22 |
1 2 3 4 5 6
|
lhpelim |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ X e. B ) -> ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) ) |
| 23 |
8 12 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) ./\ W ) = ( X ./\ W ) ) |
| 25 |
24
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) |
| 26 |
25 19
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( G ` X ) ) |
| 27 |
6 7 2 3 5 4 1
|
cdlemg2fv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) /\ ( F e. T /\ ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( G ` X ) ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) ) |
| 28 |
8 12 15 16 26 27
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) ) |
| 29 |
24
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) = ( ( F ` ( G ` P ) ) .\/ ( X ./\ W ) ) ) |
| 30 |
28 29
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( X ./\ W ) ) ) |