Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg4.a |
|- A = ( Atoms ` K ) |
3 |
|
cdlemg4.h |
|- H = ( LHyp ` K ) |
4 |
|
cdlemg4.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
cdlemg4.b |
|- B = ( Base ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
8 |
5 1 6 7 2 3
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
9 |
8
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> r e. A ) |
12 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. r .<_ W ) |
13 |
11 12
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r e. A /\ -. r .<_ W ) ) |
14 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) |
15 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> F e. T ) |
16 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) |
17 |
3 4 1 6 2 7 5
|
cdlemg2fv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( r e. A /\ -. r .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) = ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
18 |
10 13 14 15 16 17
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) = ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
19 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. HL ) |
20 |
19
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. Lat ) |
21 |
1 2 3 4
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> ( ( F ` r ) e. A /\ -. ( F ` r ) .<_ W ) ) |
22 |
21
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> ( F ` r ) e. A ) |
23 |
10 15 13 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) e. A ) |
24 |
5 2
|
atbase |
|- ( ( F ` r ) e. A -> ( F ` r ) e. B ) |
25 |
23 24
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) e. B ) |
26 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> X e. B ) |
27 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. H ) |
28 |
5 3
|
lhpbase |
|- ( W e. H -> W e. B ) |
29 |
27 28
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. B ) |
30 |
5 7
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( meet ` K ) W ) e. B ) |
31 |
20 26 29 30
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X ( meet ` K ) W ) e. B ) |
32 |
5 6
|
latjcl |
|- ( ( K e. Lat /\ ( F ` r ) e. B /\ ( X ( meet ` K ) W ) e. B ) -> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B ) |
33 |
20 25 31 32
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B ) |
34 |
18 33
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) e. B ) |
35 |
21
|
simprd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> -. ( F ` r ) .<_ W ) |
36 |
10 15 13 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( F ` r ) .<_ W ) |
37 |
5 1 6
|
latlej1 |
|- ( ( K e. Lat /\ ( F ` r ) e. B /\ ( X ( meet ` K ) W ) e. B ) -> ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
38 |
20 25 31 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) |
39 |
5 1
|
lattr |
|- ( ( K e. Lat /\ ( ( F ` r ) e. B /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B /\ W e. B ) ) -> ( ( ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) -> ( F ` r ) .<_ W ) ) |
40 |
20 25 33 29 39
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) -> ( F ` r ) .<_ W ) ) |
41 |
38 40
|
mpand |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W -> ( F ` r ) .<_ W ) ) |
42 |
36 41
|
mtod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) |
43 |
18
|
breq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` X ) .<_ W <-> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) ) |
44 |
42 43
|
mtbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( F ` X ) .<_ W ) |
45 |
34 44
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) |
46 |
45
|
rexlimdv3a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> ( E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) ) |
47 |
9 46
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) |