Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg8.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg8.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg8.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg8.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg8.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> K e. HL ) |
8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> K e. Lat ) |
9 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P e. A ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
12 |
9 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P e. ( Base ` K ) ) |
13 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> Q e. A ) |
14 |
10 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> Q e. ( Base ` K ) ) |
16 |
10 1 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> P .<_ ( P .\/ Q ) ) |
17 |
8 12 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P .<_ ( P .\/ Q ) ) |
18 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> F e. T ) |
20 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> G e. T ) |
21 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
22 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
23 |
18 20 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
24 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( ( F ` ( G ` P ) ) e. A /\ -. ( F ` ( G ` P ) ) .<_ W ) ) |
25 |
24
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( F ` ( G ` P ) ) e. A ) |
26 |
18 19 23 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) e. A ) |
27 |
10 4
|
atbase |
|- ( ( F ` ( G ` P ) ) e. A -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
28 |
26 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
29 |
10 5 6
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ Q e. ( Base ` K ) ) -> ( G ` Q ) e. ( Base ` K ) ) |
30 |
18 20 15 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( G ` Q ) e. ( Base ` K ) ) |
31 |
10 5 6
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( G ` Q ) e. ( Base ` K ) ) -> ( F ` ( G ` Q ) ) e. ( Base ` K ) ) |
32 |
18 19 30 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` Q ) ) e. ( Base ` K ) ) |
33 |
10 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( F ` ( G ` Q ) ) e. ( Base ` K ) ) -> ( F ` ( G ` P ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) ) |
34 |
8 28 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) ) |
35 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) ) |
36 |
34 35
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) ) |
37 |
10 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
38 |
7 9 13 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
39 |
10 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ Q ) /\ ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) ) ) |
40 |
8 12 28 38 39
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .<_ ( P .\/ Q ) /\ ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) ) ) |
41 |
17 36 40
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) ) |
42 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) =/= P ) |
43 |
42
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P =/= ( F ` ( G ` P ) ) ) |
44 |
1 2 4
|
ps-1 |
|- ( ( K e. HL /\ ( P e. A /\ ( F ` ( G ` P ) ) e. A /\ P =/= ( F ` ( G ` P ) ) ) /\ ( P e. A /\ Q e. A ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) ) ) |
45 |
7 9 26 43 9 13 44
|
syl132anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) ) ) |
46 |
41 45
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) ) |