Metamath Proof Explorer


Theorem cdlemg8b

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l
|- .<_ = ( le ` K )
cdlemg8.j
|- .\/ = ( join ` K )
cdlemg8.m
|- ./\ = ( meet ` K )
cdlemg8.a
|- A = ( Atoms ` K )
cdlemg8.h
|- H = ( LHyp ` K )
cdlemg8.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdlemg8b
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l
 |-  .<_ = ( le ` K )
2 cdlemg8.j
 |-  .\/ = ( join ` K )
3 cdlemg8.m
 |-  ./\ = ( meet ` K )
4 cdlemg8.a
 |-  A = ( Atoms ` K )
5 cdlemg8.h
 |-  H = ( LHyp ` K )
6 cdlemg8.t
 |-  T = ( ( LTrn ` K ) ` W )
7 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> K e. HL )
8 7 hllatd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> K e. Lat )
9 simp21l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P e. A )
10 eqid
 |-  ( Base ` K ) = ( Base ` K )
11 10 4 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
12 9 11 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P e. ( Base ` K ) )
13 simp22l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> Q e. A )
14 10 4 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
15 13 14 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> Q e. ( Base ` K ) )
16 10 1 2 latlej1
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> P .<_ ( P .\/ Q ) )
17 8 12 15 16 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P .<_ ( P .\/ Q ) )
18 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( K e. HL /\ W e. H ) )
19 simp23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> F e. T )
20 simp31
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> G e. T )
21 simp21
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) )
22 1 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
23 18 20 21 22 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
24 1 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( ( F ` ( G ` P ) ) e. A /\ -. ( F ` ( G ` P ) ) .<_ W ) )
25 24 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( F ` ( G ` P ) ) e. A )
26 18 19 23 25 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) e. A )
27 10 4 atbase
 |-  ( ( F ` ( G ` P ) ) e. A -> ( F ` ( G ` P ) ) e. ( Base ` K ) )
28 26 27 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) e. ( Base ` K ) )
29 10 5 6 ltrncl
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ Q e. ( Base ` K ) ) -> ( G ` Q ) e. ( Base ` K ) )
30 18 20 15 29 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( G ` Q ) e. ( Base ` K ) )
31 10 5 6 ltrncl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( G ` Q ) e. ( Base ` K ) ) -> ( F ` ( G ` Q ) ) e. ( Base ` K ) )
32 18 19 30 31 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` Q ) ) e. ( Base ` K ) )
33 10 1 2 latlej1
 |-  ( ( K e. Lat /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( F ` ( G ` Q ) ) e. ( Base ` K ) ) -> ( F ` ( G ` P ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) )
34 8 28 32 33 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) )
35 simp32
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) )
36 34 35 breqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) )
37 10 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
38 7 9 13 37 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
39 10 1 2 latjle12
 |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( F ` ( G ` P ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ Q ) /\ ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) ) )
40 8 12 28 38 39 syl13anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .<_ ( P .\/ Q ) /\ ( F ` ( G ` P ) ) .<_ ( P .\/ Q ) ) <-> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) ) )
41 17 36 40 mpbi2and
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) )
42 simp33
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( F ` ( G ` P ) ) =/= P )
43 42 necomd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> P =/= ( F ` ( G ` P ) ) )
44 1 2 4 ps-1
 |-  ( ( K e. HL /\ ( P e. A /\ ( F ` ( G ` P ) ) e. A /\ P =/= ( F ` ( G ` P ) ) ) /\ ( P e. A /\ Q e. A ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) ) )
45 7 9 26 43 9 13 44 syl132anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) .<_ ( P .\/ Q ) <-> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) ) )
46 41 45 mpbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) )