Metamath Proof Explorer


Theorem cdlemg8d

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l
|- .<_ = ( le ` K )
cdlemg8.j
|- .\/ = ( join ` K )
cdlemg8.m
|- ./\ = ( meet ` K )
cdlemg8.a
|- A = ( Atoms ` K )
cdlemg8.h
|- H = ( LHyp ` K )
cdlemg8.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdlemg8d
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l
 |-  .<_ = ( le ` K )
2 cdlemg8.j
 |-  .\/ = ( join ` K )
3 cdlemg8.m
 |-  ./\ = ( meet ` K )
4 cdlemg8.a
 |-  A = ( Atoms ` K )
5 cdlemg8.h
 |-  H = ( LHyp ` K )
6 cdlemg8.t
 |-  T = ( ( LTrn ` K ) ` W )
7 1 2 3 4 5 6 cdlemg8b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( P .\/ Q ) )
8 1 2 3 4 5 6 cdlemg8c
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) )
9 7 8 eqtr4d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) = ( Q .\/ ( F ` ( G ` Q ) ) ) )
10 9 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( P .\/ Q ) /\ ( F ` ( G ` P ) ) =/= P ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) )