| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg8.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg8.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdlemg8.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdlemg8.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemg8.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemg8.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
eqid |
|- ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) |
| 8 |
1 2 3 4 5 6 7
|
cdlemg9a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( ( F ` ( G ` P ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) .<_ ( ( G ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 9 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> K e. HL ) |
| 10 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> W e. H ) |
| 11 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 12 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> Q e. A ) |
| 13 |
1 2 3 4 5 7
|
cdlemg3a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) -> ( P .\/ Q ) = ( P .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 14 |
9 10 11 12 13
|
syl211anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( P .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 15 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 16 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 17 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> F e. T ) |
| 18 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> G e. T ) |
| 19 |
5 6 1 2 4 3 7
|
cdlemg2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 20 |
15 11 16 17 18 19
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 21 |
14 20
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) ) = ( ( P .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( ( F ` ( G ` P ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |
| 22 |
5 6 1 2 4 3 7
|
cdlemg2k |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ G e. T ) -> ( ( G ` P ) .\/ ( G ` Q ) ) = ( ( G ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 23 |
15 11 16 18 22
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( G ` Q ) ) = ( ( G ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
| 24 |
8 21 23
|
3brtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) |