Metamath Proof Explorer


Theorem cdlemk51

Description: Part of proof of Lemma K of Crawley p. 118. Line 6, p. 120. G , I stand for g, h. X represents tau. TODO: Combine into cdlemk52 ? (Contributed by NM, 23-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk5.y
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
cdlemk5.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk51
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) ) .<_ ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk5.y
 |-  Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
11 cdlemk5.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
12 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( K e. HL /\ W e. H ) )
13 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) )
14 simp3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( I e. T /\ I =/= ( _I |` B ) ) )
15 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> N e. T )
16 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( P e. A /\ -. P .<_ W ) )
17 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` F ) = ( R ` N ) )
18 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( R ` [_ I / g ]_ X ) .<_ ( R ` I ) )
19 12 13 14 15 16 17 18 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` [_ I / g ]_ X ) .<_ ( R ` I ) )
20 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> K e. HL )
21 20 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> K e. Lat )
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ I / g ]_ X e. T )
23 12 13 14 15 16 17 22 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> [_ I / g ]_ X e. T )
24 1 6 7 8 trlcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ [_ I / g ]_ X e. T ) -> ( R ` [_ I / g ]_ X ) e. B )
25 12 23 24 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` [_ I / g ]_ X ) e. B )
26 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> I e. T )
27 simp3r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> I =/= ( _I |` B ) )
28 1 5 6 7 8 trlnidat
 |-  ( ( ( K e. HL /\ W e. H ) /\ I e. T /\ I =/= ( _I |` B ) ) -> ( R ` I ) e. A )
29 12 26 27 28 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` I ) e. A )
30 1 5 atbase
 |-  ( ( R ` I ) e. A -> ( R ` I ) e. B )
31 29 30 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` I ) e. B )
32 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( G e. T /\ G =/= ( _I |` B ) ) )
33 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ G / g ]_ X e. T )
34 12 13 32 15 16 17 33 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> [_ G / g ]_ X e. T )
35 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> P e. A )
36 2 5 6 7 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ [_ G / g ]_ X e. T /\ P e. A ) -> ( [_ G / g ]_ X ` P ) e. A )
37 12 34 35 36 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ G / g ]_ X ` P ) e. A )
38 1 5 atbase
 |-  ( ( [_ G / g ]_ X ` P ) e. A -> ( [_ G / g ]_ X ` P ) e. B )
39 37 38 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ G / g ]_ X ` P ) e. B )
40 1 2 3 latjlej2
 |-  ( ( K e. Lat /\ ( ( R ` [_ I / g ]_ X ) e. B /\ ( R ` I ) e. B /\ ( [_ G / g ]_ X ` P ) e. B ) ) -> ( ( R ` [_ I / g ]_ X ) .<_ ( R ` I ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) .<_ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ) )
41 21 25 31 39 40 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( R ` [_ I / g ]_ X ) .<_ ( R ` I ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) .<_ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ) )
42 19 41 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) .<_ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) )
43 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( R ` [_ G / g ]_ X ) .<_ ( R ` G ) )
44 12 13 32 15 16 17 43 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` [_ G / g ]_ X ) .<_ ( R ` G ) )
45 1 6 7 8 trlcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ [_ G / g ]_ X e. T ) -> ( R ` [_ G / g ]_ X ) e. B )
46 12 34 45 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` [_ G / g ]_ X ) e. B )
47 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> G e. T )
48 simp13r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> G =/= ( _I |` B ) )
49 1 5 6 7 8 trlnidat
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. A )
50 12 47 48 49 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` G ) e. A )
51 1 5 atbase
 |-  ( ( R ` G ) e. A -> ( R ` G ) e. B )
52 50 51 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( R ` G ) e. B )
53 2 5 6 7 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ [_ I / g ]_ X e. T /\ P e. A ) -> ( [_ I / g ]_ X ` P ) e. A )
54 12 23 35 53 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ I / g ]_ X ` P ) e. A )
55 1 5 atbase
 |-  ( ( [_ I / g ]_ X ` P ) e. A -> ( [_ I / g ]_ X ` P ) e. B )
56 54 55 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ I / g ]_ X ` P ) e. B )
57 1 2 3 latjlej2
 |-  ( ( K e. Lat /\ ( ( R ` [_ G / g ]_ X ) e. B /\ ( R ` G ) e. B /\ ( [_ I / g ]_ X ` P ) e. B ) ) -> ( ( R ` [_ G / g ]_ X ) .<_ ( R ` G ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) )
58 21 46 52 56 57 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( R ` [_ G / g ]_ X ) .<_ ( R ` G ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) )
59 44 58 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) )
60 1 3 latjcl
 |-  ( ( K e. Lat /\ ( [_ G / g ]_ X ` P ) e. B /\ ( R ` [_ I / g ]_ X ) e. B ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) e. B )
61 21 39 25 60 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) e. B )
62 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( [_ G / g ]_ X ` P ) e. A /\ ( R ` I ) e. A ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) e. B )
63 20 37 29 62 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) e. B )
64 1 3 latjcl
 |-  ( ( K e. Lat /\ ( [_ I / g ]_ X ` P ) e. B /\ ( R ` [_ G / g ]_ X ) e. B ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) e. B )
65 21 56 46 64 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) e. B )
66 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( [_ I / g ]_ X ` P ) e. A /\ ( R ` G ) e. A ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) e. B )
67 20 54 50 66 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) e. B )
68 1 2 4 latmlem12
 |-  ( ( K e. Lat /\ ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) e. B /\ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) e. B ) /\ ( ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) e. B /\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) e. B ) ) -> ( ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) .<_ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) /\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) -> ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) ) .<_ ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) ) )
69 21 61 63 65 67 68 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) .<_ ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) /\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) -> ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) ) .<_ ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) ) )
70 42 59 69 mp2and
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` [_ I / g ]_ X ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` [_ G / g ]_ X ) ) ) .<_ ( ( ( [_ G / g ]_ X ` P ) .\/ ( R ` I ) ) ./\ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) ) )