Metamath Proof Explorer


Theorem cdlemk53

Description: Part of proof of Lemma K of Crawley p. 118. Line 7, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk5.y
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
cdlemk5.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk53
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk5.y
 |-  Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
11 cdlemk5.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
12 simp1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( K e. HL /\ W e. H ) )
13 simp211
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> F e. T )
14 simp212
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> F =/= ( _I |` B ) )
15 13 14 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) )
16 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> G e. T )
17 simp213
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> N e. T )
18 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( P e. A /\ -. P .<_ W ) )
19 simp1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( R ` F ) = ( R ` N ) )
20 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ G / g ]_ X e. T )
21 12 15 16 17 18 19 20 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ G / g ]_ X e. T )
22 1 6 7 ltrn1o
 |-  ( ( ( K e. HL /\ W e. H ) /\ [_ G / g ]_ X e. T ) -> [_ G / g ]_ X : B -1-1-onto-> B )
23 12 21 22 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ G / g ]_ X : B -1-1-onto-> B )
24 f1of
 |-  ( [_ G / g ]_ X : B -1-1-onto-> B -> [_ G / g ]_ X : B --> B )
25 fcoi1
 |-  ( [_ G / g ]_ X : B --> B -> ( [_ G / g ]_ X o. ( _I |` B ) ) = [_ G / g ]_ X )
26 23 24 25 3syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( [_ G / g ]_ X o. ( _I |` B ) ) = [_ G / g ]_ X )
27 26 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( [_ G / g ]_ X o. ( _I |` B ) ) = [_ G / g ]_ X )
28 simpl1l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( K e. HL /\ W e. H ) )
29 13 17 19 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) )
30 29 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) )
31 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( P e. A /\ -. P .<_ W ) )
32 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> I = ( _I |` B ) )
33 1 2 3 4 5 6 7 8 9 10 11 cdlemkid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ I = ( _I |` B ) ) ) -> [_ I / g ]_ X = ( _I |` B ) )
34 28 30 31 32 33 syl112anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> [_ I / g ]_ X = ( _I |` B ) )
35 34 coeq2d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( [_ G / g ]_ X o. [_ I / g ]_ X ) = ( [_ G / g ]_ X o. ( _I |` B ) ) )
36 32 coeq2d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( G o. I ) = ( G o. ( _I |` B ) ) )
37 1 6 7 ltrn1o
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> G : B -1-1-onto-> B )
38 12 16 37 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> G : B -1-1-onto-> B )
39 f1of
 |-  ( G : B -1-1-onto-> B -> G : B --> B )
40 fcoi1
 |-  ( G : B --> B -> ( G o. ( _I |` B ) ) = G )
41 38 39 40 3syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> ( G o. ( _I |` B ) ) = G )
42 41 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( G o. ( _I |` B ) ) = G )
43 36 42 eqtrd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> ( G o. I ) = G )
44 43 csbeq1d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> [_ ( G o. I ) / g ]_ X = [_ G / g ]_ X )
45 27 35 44 3eqtr4rd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I = ( _I |` B ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
46 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) )
47 simpl2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) )
48 simpl3l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> I e. T )
49 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> I =/= ( _I |` B ) )
50 simpl3r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> ( R ` G ) =/= ( R ` I ) )
51 1 2 3 4 5 6 7 8 9 10 11 cdlemk53b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
52 46 47 48 49 50 51 syl113anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) /\ I =/= ( _I |` B ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
53 45 52 pm2.61dane
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )