Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
2 |
|
reflcl |
|- ( -u A e. RR -> ( |_ ` -u A ) e. RR ) |
3 |
1 2
|
syl |
|- ( A e. RR -> ( |_ ` -u A ) e. RR ) |
4 |
|
flle |
|- ( -u A e. RR -> ( |_ ` -u A ) <_ -u A ) |
5 |
1 4
|
syl |
|- ( A e. RR -> ( |_ ` -u A ) <_ -u A ) |
6 |
5
|
adantr |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( |_ ` -u A ) <_ -u A ) |
7 |
|
lenegcon2 |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( A <_ -u ( |_ ` -u A ) <-> ( |_ ` -u A ) <_ -u A ) ) |
8 |
6 7
|
mpbird |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> A <_ -u ( |_ ` -u A ) ) |
9 |
3 8
|
mpdan |
|- ( A e. RR -> A <_ -u ( |_ ` -u A ) ) |