Description: An integer is its own ceiling. (Contributed by AV, 30-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ceilid | |- ( A e. ZZ -> ( |^ ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
2 | ceilval | |- ( A e. RR -> ( |^ ` A ) = -u ( |_ ` -u A ) ) |
|
3 | 1 2 | syl | |- ( A e. ZZ -> ( |^ ` A ) = -u ( |_ ` -u A ) ) |
4 | znegcl | |- ( A e. ZZ -> -u A e. ZZ ) |
|
5 | flid | |- ( -u A e. ZZ -> ( |_ ` -u A ) = -u A ) |
|
6 | 4 5 | syl | |- ( A e. ZZ -> ( |_ ` -u A ) = -u A ) |
7 | 6 | negeqd | |- ( A e. ZZ -> -u ( |_ ` -u A ) = -u -u A ) |
8 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
9 | 8 | negnegd | |- ( A e. ZZ -> -u -u A = A ) |
10 | 3 7 9 | 3eqtrd | |- ( A e. ZZ -> ( |^ ` A ) = A ) |