Metamath Proof Explorer


Theorem ceilval

Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015)

Ref Expression
Assertion ceilval
|- ( A e. RR -> ( |^ ` A ) = -u ( |_ ` -u A ) )

Proof

Step Hyp Ref Expression
1 negeq
 |-  ( x = A -> -u x = -u A )
2 1 fveq2d
 |-  ( x = A -> ( |_ ` -u x ) = ( |_ ` -u A ) )
3 2 negeqd
 |-  ( x = A -> -u ( |_ ` -u x ) = -u ( |_ ` -u A ) )
4 df-ceil
 |-  |^ = ( x e. RR |-> -u ( |_ ` -u x ) )
5 negex
 |-  -u ( |_ ` -u A ) e. _V
6 3 4 5 fvmpt
 |-  ( A e. RR -> ( |^ ` A ) = -u ( |_ ` -u A ) )