Metamath Proof Explorer


Theorem ceim1l

Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceim1l
|- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A )

Proof

Step Hyp Ref Expression
1 renegcl
 |-  ( A e. RR -> -u A e. RR )
2 reflcl
 |-  ( -u A e. RR -> ( |_ ` -u A ) e. RR )
3 1 2 syl
 |-  ( A e. RR -> ( |_ ` -u A ) e. RR )
4 3 recnd
 |-  ( A e. RR -> ( |_ ` -u A ) e. CC )
5 ax-1cn
 |-  1 e. CC
6 negdi
 |-  ( ( ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) )
7 4 5 6 sylancl
 |-  ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) )
8 4 negcld
 |-  ( A e. RR -> -u ( |_ ` -u A ) e. CC )
9 negsub
 |-  ( ( -u ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) )
10 8 5 9 sylancl
 |-  ( A e. RR -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) )
11 7 10 eqtr2d
 |-  ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) = -u ( ( |_ ` -u A ) + 1 ) )
12 peano2re
 |-  ( ( |_ ` -u A ) e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR )
13 3 12 syl
 |-  ( A e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR )
14 flltp1
 |-  ( -u A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) )
15 1 14 syl
 |-  ( A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) )
16 15 adantr
 |-  ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u A < ( ( |_ ` -u A ) + 1 ) )
17 ltnegcon1
 |-  ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> ( -u A < ( ( |_ ` -u A ) + 1 ) <-> -u ( ( |_ ` -u A ) + 1 ) < A ) )
18 16 17 mpbid
 |-  ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u ( ( |_ ` -u A ) + 1 ) < A )
19 13 18 mpdan
 |-  ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) < A )
20 11 19 eqbrtrd
 |-  ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A )