| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
|
reflcl |
|- ( -u A e. RR -> ( |_ ` -u A ) e. RR ) |
| 3 |
1 2
|
syl |
|- ( A e. RR -> ( |_ ` -u A ) e. RR ) |
| 4 |
3
|
recnd |
|- ( A e. RR -> ( |_ ` -u A ) e. CC ) |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
|
negdi |
|- ( ( ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) ) |
| 7 |
4 5 6
|
sylancl |
|- ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) ) |
| 8 |
4
|
negcld |
|- ( A e. RR -> -u ( |_ ` -u A ) e. CC ) |
| 9 |
|
negsub |
|- ( ( -u ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) ) |
| 10 |
8 5 9
|
sylancl |
|- ( A e. RR -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) ) |
| 11 |
7 10
|
eqtr2d |
|- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) = -u ( ( |_ ` -u A ) + 1 ) ) |
| 12 |
|
peano2re |
|- ( ( |_ ` -u A ) e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR ) |
| 13 |
3 12
|
syl |
|- ( A e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR ) |
| 14 |
|
flltp1 |
|- ( -u A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
| 15 |
1 14
|
syl |
|- ( A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
| 16 |
15
|
adantr |
|- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
| 17 |
|
ltnegcon1 |
|- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> ( -u A < ( ( |_ ` -u A ) + 1 ) <-> -u ( ( |_ ` -u A ) + 1 ) < A ) ) |
| 18 |
16 17
|
mpbid |
|- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u ( ( |_ ` -u A ) + 1 ) < A ) |
| 19 |
13 18
|
mpdan |
|- ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) < A ) |
| 20 |
11 19
|
eqbrtrd |
|- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A ) |