| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.8a |
|- ( ( x = A /\ ph ) -> E. x ( x = A /\ ph ) ) |
| 2 |
1
|
ex |
|- ( x = A -> ( ph -> E. x ( x = A /\ ph ) ) ) |
| 3 |
|
eqvisset |
|- ( x = A -> A e. _V ) |
| 4 |
|
alexeqg |
|- ( A e. _V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |
| 5 |
3 4
|
syl |
|- ( x = A -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |
| 6 |
|
sp |
|- ( A. x ( x = A -> ph ) -> ( x = A -> ph ) ) |
| 7 |
6
|
com12 |
|- ( x = A -> ( A. x ( x = A -> ph ) -> ph ) ) |
| 8 |
5 7
|
sylbird |
|- ( x = A -> ( E. x ( x = A /\ ph ) -> ph ) ) |
| 9 |
2 8
|
impbid |
|- ( x = A -> ( ph <-> E. x ( x = A /\ ph ) ) ) |