Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsal.1 | |- F/ x ps |
|
ceqsal.2 | |- A e. _V |
||
ceqsal.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ceqsal | |- ( A. x ( x = A -> ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsal.1 | |- F/ x ps |
|
2 | ceqsal.2 | |- A e. _V |
|
3 | ceqsal.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | 1 3 | ceqsalg | |- ( A e. _V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
5 | 2 4 | ax-mp | |- ( A. x ( x = A -> ph ) <-> ps ) |