Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab . (Contributed by NM, 18-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsal.1 | |- F/ x ps | |
| ceqsal.2 | |- A e. _V | ||
| ceqsal.3 | |- ( x = A -> ( ph <-> ps ) ) | ||
| Assertion | ceqsalALT | |- ( A. x ( x = A -> ph ) <-> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ceqsal.1 | |- F/ x ps | |
| 2 | ceqsal.2 | |- A e. _V | |
| 3 | ceqsal.3 | |- ( x = A -> ( ph <-> ps ) ) | |
| 4 | 1 3 | ceqsalg | |- ( A e. _V -> ( A. x ( x = A -> ph ) <-> ps ) ) | 
| 5 | 2 4 | ax-mp | |- ( A. x ( x = A -> ph ) <-> ps ) |