Metamath Proof Explorer


Theorem ceqsalg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT . (Contributed by NM, 29-Oct-2003) (Proof shortened by BJ, 29-Sep-2019)

Ref Expression
Hypotheses ceqsalg.1
|- F/ x ps
ceqsalg.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsalg
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 ceqsalg.1
 |-  F/ x ps
2 ceqsalg.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 ax-gen
 |-  A. x ( x = A -> ( ph <-> ps ) )
4 ceqsalt
 |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) )
5 1 3 4 mp3an12
 |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )