Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsalg.1 |
|- F/ x ps |
2 |
|
ceqsalg.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
4 |
|
nfa1 |
|- F/ x A. x ( x = A -> ph ) |
5 |
2
|
biimpd |
|- ( x = A -> ( ph -> ps ) ) |
6 |
5
|
a2i |
|- ( ( x = A -> ph ) -> ( x = A -> ps ) ) |
7 |
6
|
sps |
|- ( A. x ( x = A -> ph ) -> ( x = A -> ps ) ) |
8 |
4 1 7
|
exlimd |
|- ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) |
9 |
3 8
|
syl5com |
|- ( A e. V -> ( A. x ( x = A -> ph ) -> ps ) ) |
10 |
2
|
biimprcd |
|- ( ps -> ( x = A -> ph ) ) |
11 |
1 10
|
alrimi |
|- ( ps -> A. x ( x = A -> ph ) ) |
12 |
9 11
|
impbid1 |
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |