Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
2 |
1
|
3ad2ant3 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> E. x x = A ) |
3 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
4 |
3
|
imim3i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) -> ( x = A -> ps ) ) ) |
5 |
4
|
al2imi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) |
6 |
5
|
3ad2ant2 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) |
7 |
|
19.23t |
|- ( F/ x ps -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
9 |
6 8
|
sylibd |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) ) |
10 |
2 9
|
mpid |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) -> ps ) ) |
11 |
|
biimpr |
|- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
12 |
11
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) |
13 |
12
|
com23 |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ps -> ( x = A -> ph ) ) ) |
14 |
13
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ps -> ( x = A -> ph ) ) ) |
15 |
14
|
3ad2ant2 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> A. x ( ps -> ( x = A -> ph ) ) ) |
16 |
|
19.21t |
|- ( F/ x ps -> ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) ) |
18 |
15 17
|
mpbid |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
19 |
10 18
|
impbid |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |