Metamath Proof Explorer


Theorem ceqsalv

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid ax-12 . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypotheses ceqsalv.1
|- A e. _V
ceqsalv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsalv
|- ( A. x ( x = A -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 ceqsalv.1
 |-  A e. _V
2 ceqsalv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 pm5.74i
 |-  ( ( x = A -> ph ) <-> ( x = A -> ps ) )
4 3 albii
 |-  ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) )
5 19.23v
 |-  ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) )
6 1 isseti
 |-  E. x x = A
7 pm5.5
 |-  ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) )
8 6 7 ax-mp
 |-  ( ( E. x x = A -> ps ) <-> ps )
9 4 5 8 3bitri
 |-  ( A. x ( x = A -> ph ) <-> ps )