Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses ceqsex.1
|- F/ x ps
ceqsex.2
|- A e. _V
ceqsex.3
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsex
|- ( E. x ( x = A /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 ceqsex.1
 |-  F/ x ps
2 ceqsex.2
 |-  A e. _V
3 ceqsex.3
 |-  ( x = A -> ( ph <-> ps ) )
4 3 biimpa
 |-  ( ( x = A /\ ph ) -> ps )
5 1 4 exlimi
 |-  ( E. x ( x = A /\ ph ) -> ps )
6 3 biimprcd
 |-  ( ps -> ( x = A -> ph ) )
7 1 6 alrimi
 |-  ( ps -> A. x ( x = A -> ph ) )
8 2 isseti
 |-  E. x x = A
9 exintr
 |-  ( A. x ( x = A -> ph ) -> ( E. x x = A -> E. x ( x = A /\ ph ) ) )
10 7 8 9 mpisyl
 |-  ( ps -> E. x ( x = A /\ ph ) )
11 5 10 impbii
 |-  ( E. x ( x = A /\ ph ) <-> ps )