Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsex.1 | |- F/ x ps |
|
ceqsex.2 | |- A e. _V |
||
ceqsex.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ceqsex | |- ( E. x ( x = A /\ ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsex.1 | |- F/ x ps |
|
2 | ceqsex.2 | |- A e. _V |
|
3 | ceqsex.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | 3 | biimpa | |- ( ( x = A /\ ph ) -> ps ) |
5 | 1 4 | exlimi | |- ( E. x ( x = A /\ ph ) -> ps ) |
6 | 3 | biimprcd | |- ( ps -> ( x = A -> ph ) ) |
7 | 1 6 | alrimi | |- ( ps -> A. x ( x = A -> ph ) ) |
8 | 2 | isseti | |- E. x x = A |
9 | exintr | |- ( A. x ( x = A -> ph ) -> ( E. x x = A -> E. x ( x = A /\ ph ) ) ) |
|
10 | 7 8 9 | mpisyl | |- ( ps -> E. x ( x = A /\ ph ) ) |
11 | 5 10 | impbii | |- ( E. x ( x = A /\ ph ) <-> ps ) |