Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (Proof shortened by Wolf Lammen, 22-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsex.1 | |- F/ x ps |
|
ceqsex.2 | |- A e. _V |
||
ceqsex.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ceqsex | |- ( E. x ( x = A /\ ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsex.1 | |- F/ x ps |
|
2 | ceqsex.2 | |- A e. _V |
|
3 | ceqsex.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | alinexa | |- ( A. x ( x = A -> -. ph ) <-> -. E. x ( x = A /\ ph ) ) |
|
5 | 1 | nfn | |- F/ x -. ps |
6 | 3 | notbid | |- ( x = A -> ( -. ph <-> -. ps ) ) |
7 | 5 2 6 | ceqsal | |- ( A. x ( x = A -> -. ph ) <-> -. ps ) |
8 | 4 7 | bitr3i | |- ( -. E. x ( x = A /\ ph ) <-> -. ps ) |
9 | 8 | con4bii | |- ( E. x ( x = A /\ ph ) <-> ps ) |