Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (Proof shortened by Wolf Lammen, 22-Jan-2025)

Ref Expression
Hypotheses ceqsex.1
|- F/ x ps
ceqsex.2
|- A e. _V
ceqsex.3
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsex
|- ( E. x ( x = A /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 ceqsex.1
 |-  F/ x ps
2 ceqsex.2
 |-  A e. _V
3 ceqsex.3
 |-  ( x = A -> ( ph <-> ps ) )
4 alinexa
 |-  ( A. x ( x = A -> -. ph ) <-> -. E. x ( x = A /\ ph ) )
5 1 nfn
 |-  F/ x -. ps
6 3 notbid
 |-  ( x = A -> ( -. ph <-> -. ps ) )
7 5 2 6 ceqsal
 |-  ( A. x ( x = A -> -. ph ) <-> -. ps )
8 4 7 bitr3i
 |-  ( -. E. x ( x = A /\ ph ) <-> -. ps )
9 8 con4bii
 |-  ( E. x ( x = A /\ ph ) <-> ps )