| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsex2v.1 |  |-  A e. _V | 
						
							| 2 |  | ceqsex2v.2 |  |-  B e. _V | 
						
							| 3 |  | ceqsex2v.3 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 4 |  | ceqsex2v.4 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 5 |  | 3anass |  |-  ( ( x = A /\ y = B /\ ph ) <-> ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 6 | 5 | exbii |  |-  ( E. y ( x = A /\ y = B /\ ph ) <-> E. y ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 7 |  | 19.42v |  |-  ( E. y ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( E. y ( x = A /\ y = B /\ ph ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 9 | 8 | exbii |  |-  ( E. x E. y ( x = A /\ y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 10 | 3 | anbi2d |  |-  ( x = A -> ( ( y = B /\ ph ) <-> ( y = B /\ ps ) ) ) | 
						
							| 11 | 10 | exbidv |  |-  ( x = A -> ( E. y ( y = B /\ ph ) <-> E. y ( y = B /\ ps ) ) ) | 
						
							| 12 | 1 11 | ceqsexv |  |-  ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ ps ) ) | 
						
							| 13 | 2 4 | ceqsexv |  |-  ( E. y ( y = B /\ ps ) <-> ch ) | 
						
							| 14 | 9 12 13 | 3bitri |  |-  ( E. x E. y ( x = A /\ y = B /\ ph ) <-> ch ) |