Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex3v.1 |
|- A e. _V |
2 |
|
ceqsex3v.2 |
|- B e. _V |
3 |
|
ceqsex3v.3 |
|- C e. _V |
4 |
|
ceqsex3v.4 |
|- ( x = A -> ( ph <-> ps ) ) |
5 |
|
ceqsex3v.5 |
|- ( y = B -> ( ps <-> ch ) ) |
6 |
|
ceqsex3v.6 |
|- ( z = C -> ( ch <-> th ) ) |
7 |
|
anass |
|- ( ( ( x = A /\ ( y = B /\ z = C ) ) /\ ph ) <-> ( x = A /\ ( ( y = B /\ z = C ) /\ ph ) ) ) |
8 |
|
3anass |
|- ( ( x = A /\ y = B /\ z = C ) <-> ( x = A /\ ( y = B /\ z = C ) ) ) |
9 |
8
|
anbi1i |
|- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( ( x = A /\ ( y = B /\ z = C ) ) /\ ph ) ) |
10 |
|
df-3an |
|- ( ( y = B /\ z = C /\ ph ) <-> ( ( y = B /\ z = C ) /\ ph ) ) |
11 |
10
|
anbi2i |
|- ( ( x = A /\ ( y = B /\ z = C /\ ph ) ) <-> ( x = A /\ ( ( y = B /\ z = C ) /\ ph ) ) ) |
12 |
7 9 11
|
3bitr4i |
|- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( x = A /\ ( y = B /\ z = C /\ ph ) ) ) |
13 |
12
|
2exbii |
|- ( E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> E. y E. z ( x = A /\ ( y = B /\ z = C /\ ph ) ) ) |
14 |
|
19.42vv |
|- ( E. y E. z ( x = A /\ ( y = B /\ z = C /\ ph ) ) <-> ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
15 |
13 14
|
bitri |
|- ( E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
16 |
15
|
exbii |
|- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> E. x ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
17 |
4
|
3anbi3d |
|- ( x = A -> ( ( y = B /\ z = C /\ ph ) <-> ( y = B /\ z = C /\ ps ) ) ) |
18 |
17
|
2exbidv |
|- ( x = A -> ( E. y E. z ( y = B /\ z = C /\ ph ) <-> E. y E. z ( y = B /\ z = C /\ ps ) ) ) |
19 |
1 18
|
ceqsexv |
|- ( E. x ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) <-> E. y E. z ( y = B /\ z = C /\ ps ) ) |
20 |
2 3 5 6
|
ceqsex2v |
|- ( E. y E. z ( y = B /\ z = C /\ ps ) <-> th ) |
21 |
19 20
|
bitri |
|- ( E. x ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) <-> th ) |
22 |
16 21
|
bitri |
|- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> th ) |