| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsex4v.1 |  |-  A e. _V | 
						
							| 2 |  | ceqsex4v.2 |  |-  B e. _V | 
						
							| 3 |  | ceqsex4v.3 |  |-  C e. _V | 
						
							| 4 |  | ceqsex4v.4 |  |-  D e. _V | 
						
							| 5 |  | ceqsex4v.7 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 6 |  | ceqsex4v.8 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 7 |  | ceqsex4v.9 |  |-  ( z = C -> ( ch <-> th ) ) | 
						
							| 8 |  | ceqsex4v.10 |  |-  ( w = D -> ( th <-> ta ) ) | 
						
							| 9 |  | 19.42vv |  |-  ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 10 |  | 3anass |  |-  ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) | 
						
							| 11 |  | df-3an |  |-  ( ( z = C /\ w = D /\ ph ) <-> ( ( z = C /\ w = D ) /\ ph ) ) | 
						
							| 12 | 11 | anbi2i |  |-  ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) | 
						
							| 13 | 10 12 | bitr4i |  |-  ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 14 | 13 | 2exbii |  |-  ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 15 |  | df-3an |  |-  ( ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 16 | 9 14 15 | 3bitr4i |  |-  ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 17 | 16 | 2exbii |  |-  ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) | 
						
							| 18 | 5 | 3anbi3d |  |-  ( x = A -> ( ( z = C /\ w = D /\ ph ) <-> ( z = C /\ w = D /\ ps ) ) ) | 
						
							| 19 | 18 | 2exbidv |  |-  ( x = A -> ( E. z E. w ( z = C /\ w = D /\ ph ) <-> E. z E. w ( z = C /\ w = D /\ ps ) ) ) | 
						
							| 20 | 6 | 3anbi3d |  |-  ( y = B -> ( ( z = C /\ w = D /\ ps ) <-> ( z = C /\ w = D /\ ch ) ) ) | 
						
							| 21 | 20 | 2exbidv |  |-  ( y = B -> ( E. z E. w ( z = C /\ w = D /\ ps ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) ) | 
						
							| 22 | 1 2 19 21 | ceqsex2v |  |-  ( E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) | 
						
							| 23 | 3 4 7 8 | ceqsex2v |  |-  ( E. z E. w ( z = C /\ w = D /\ ch ) <-> ta ) | 
						
							| 24 | 17 22 23 | 3bitri |  |-  ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ta ) |