Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsexg.1 | |- F/ x ps |
|
ceqsexg.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ceqsexg | |- ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexg.1 | |- F/ x ps |
|
2 | ceqsexg.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | nfe1 | |- F/ x E. x ( x = A /\ ph ) |
|
4 | 3 1 | nfbi | |- F/ x ( E. x ( x = A /\ ph ) <-> ps ) |
5 | ceqex | |- ( x = A -> ( ph <-> E. x ( x = A /\ ph ) ) ) |
|
6 | 5 2 | bibi12d | |- ( x = A -> ( ( ph <-> ph ) <-> ( E. x ( x = A /\ ph ) <-> ps ) ) ) |
7 | biid | |- ( ph <-> ph ) |
|
8 | 4 6 7 | vtoclg1f | |- ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) ) |