Metamath Proof Explorer


Theorem ceqsexg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypotheses ceqsexg.1
|- F/ x ps
ceqsexg.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsexg
|- ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 ceqsexg.1
 |-  F/ x ps
2 ceqsexg.2
 |-  ( x = A -> ( ph <-> ps ) )
3 nfe1
 |-  F/ x E. x ( x = A /\ ph )
4 3 1 nfbi
 |-  F/ x ( E. x ( x = A /\ ph ) <-> ps )
5 ceqex
 |-  ( x = A -> ( ph <-> E. x ( x = A /\ ph ) ) )
6 5 2 bibi12d
 |-  ( x = A -> ( ( ph <-> ph ) <-> ( E. x ( x = A /\ ph ) <-> ps ) ) )
7 biid
 |-  ( ph <-> ph )
8 4 6 7 vtoclg1f
 |-  ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )