Metamath Proof Explorer


Theorem ceqsexgv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996) Drop ax-10 and ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis ceqsexgv.1
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsexgv
|- ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 ceqsexgv.1
 |-  ( x = A -> ( ph <-> ps ) )
2 id
 |-  ( x = A -> x = A )
3 2 1 cgsexg
 |-  ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )