Metamath Proof Explorer


Theorem ceqsexgvOLD

Description: Obsolete version of ceqsexgv as of 1-Dec-2023. (Contributed by NM, 29-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ceqsexgv.1
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsexgvOLD
|- ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 ceqsexgv.1
 |-  ( x = A -> ( ph <-> ps ) )
2 nfv
 |-  F/ x ps
3 2 1 ceqsexg
 |-  ( A e. V -> ( E. x ( x = A /\ ph ) <-> ps ) )