Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by GG, 12-Oct-2024) (Proof shortened by Wolf Lammen, 22-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsexv.1 | |- A e. _V |
|
| ceqsexv.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | ceqsexv | |- ( E. x ( x = A /\ ph ) <-> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv.1 | |- A e. _V |
|
| 2 | ceqsexv.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | alinexa | |- ( A. x ( x = A -> -. ph ) <-> -. E. x ( x = A /\ ph ) ) |
|
| 4 | 2 | notbid | |- ( x = A -> ( -. ph <-> -. ps ) ) |
| 5 | 1 4 | ceqsalv | |- ( A. x ( x = A -> -. ph ) <-> -. ps ) |
| 6 | 3 5 | bitr3i | |- ( -. E. x ( x = A /\ ph ) <-> -. ps ) |
| 7 | 6 | con4bii | |- ( E. x ( x = A /\ ph ) <-> ps ) |