Metamath Proof Explorer


Theorem ceqsexvOLD

Description: Obsolete version of ceqsexv as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ceqsexvOLD.1
|- A e. _V
ceqsexvOLD.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsexvOLD
|- ( E. x ( x = A /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 ceqsexvOLD.1
 |-  A e. _V
2 ceqsexvOLD.2
 |-  ( x = A -> ( ph <-> ps ) )
3 nfv
 |-  F/ x ps
4 3 1 2 ceqsex
 |-  ( E. x ( x = A /\ ph ) <-> ps )