Step |
Hyp |
Ref |
Expression |
1 |
|
biimt |
|- ( A e. B -> ( A. x ( x = A -> ph ) <-> ( A e. B -> A. x ( x = A -> ph ) ) ) ) |
2 |
|
df-ral |
|- ( A. x e. B ( x = A -> ph ) <-> A. x ( x e. B -> ( x = A -> ph ) ) ) |
3 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
4 |
3
|
pm5.32ri |
|- ( ( x e. B /\ x = A ) <-> ( A e. B /\ x = A ) ) |
5 |
4
|
imbi1i |
|- ( ( ( x e. B /\ x = A ) -> ph ) <-> ( ( A e. B /\ x = A ) -> ph ) ) |
6 |
|
impexp |
|- ( ( ( x e. B /\ x = A ) -> ph ) <-> ( x e. B -> ( x = A -> ph ) ) ) |
7 |
|
impexp |
|- ( ( ( A e. B /\ x = A ) -> ph ) <-> ( A e. B -> ( x = A -> ph ) ) ) |
8 |
5 6 7
|
3bitr3i |
|- ( ( x e. B -> ( x = A -> ph ) ) <-> ( A e. B -> ( x = A -> ph ) ) ) |
9 |
8
|
albii |
|- ( A. x ( x e. B -> ( x = A -> ph ) ) <-> A. x ( A e. B -> ( x = A -> ph ) ) ) |
10 |
|
19.21v |
|- ( A. x ( A e. B -> ( x = A -> ph ) ) <-> ( A e. B -> A. x ( x = A -> ph ) ) ) |
11 |
2 9 10
|
3bitrri |
|- ( ( A e. B -> A. x ( x = A -> ph ) ) <-> A. x e. B ( x = A -> ph ) ) |
12 |
1 11
|
bitrdi |
|- ( A e. B -> ( A. x ( x = A -> ph ) <-> A. x e. B ( x = A -> ph ) ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> A. x e. B ( x = A -> ph ) ) ) |
14 |
|
ceqsalt |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
15 |
13 14
|
bitr3d |
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |