Metamath Proof Explorer


Theorem cesare

Description: "Cesare", one of the syllogisms of Aristotelian logic. No ph is ps , and all ch is ps , therefore no ch is ph . In Aristotelian notation, EAE-2: PeM and SaM therefore SeP. Related to celarent . (Contributed by David A. Wheeler, 27-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses cesare.maj
|- A. x ( ph -> -. ps )
cesare.min
|- A. x ( ch -> ps )
Assertion cesare
|- A. x ( ch -> -. ph )

Proof

Step Hyp Ref Expression
1 cesare.maj
 |-  A. x ( ph -> -. ps )
2 cesare.min
 |-  A. x ( ch -> ps )
3 con2
 |-  ( ( ph -> -. ps ) -> ( ps -> -. ph ) )
4 3 alimi
 |-  ( A. x ( ph -> -. ps ) -> A. x ( ps -> -. ph ) )
5 1 4 ax-mp
 |-  A. x ( ps -> -. ph )
6 5 2 celarent
 |-  A. x ( ch -> -. ph )