Description: Ceva's theorem. Let A B C be a triangle and let points F , D and E lie on sides A B , B C , C A correspondingly. Suppose that cevians A D , B E and C F intersect at one point O . Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.
The proof goes by applying cevathlem2 three times and then using cevathlem1 to multiply obtained identities and prove the theorem.
In the theorem statement we are using function G as a collinearity indicator. For justification of that use, see sigarcol . This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cevath.sigar | |- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
|
cevath.a | |- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
||
cevath.b | |- ( ph -> ( F e. CC /\ D e. CC /\ E e. CC ) ) |
||
cevath.c | |- ( ph -> O e. CC ) |
||
cevath.d | |- ( ph -> ( ( ( A - O ) G ( D - O ) ) = 0 /\ ( ( B - O ) G ( E - O ) ) = 0 /\ ( ( C - O ) G ( F - O ) ) = 0 ) ) |
||
cevath.e | |- ( ph -> ( ( ( A - F ) G ( B - F ) ) = 0 /\ ( ( B - D ) G ( C - D ) ) = 0 /\ ( ( C - E ) G ( A - E ) ) = 0 ) ) |
||
cevath.f | |- ( ph -> ( ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 ) ) |
||
Assertion | cevath | |- ( ph -> ( ( ( A - F ) x. ( C - E ) ) x. ( B - D ) ) = ( ( ( F - B ) x. ( E - A ) ) x. ( D - C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cevath.sigar | |- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
|
2 | cevath.a | |- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
|
3 | cevath.b | |- ( ph -> ( F e. CC /\ D e. CC /\ E e. CC ) ) |
|
4 | cevath.c | |- ( ph -> O e. CC ) |
|
5 | cevath.d | |- ( ph -> ( ( ( A - O ) G ( D - O ) ) = 0 /\ ( ( B - O ) G ( E - O ) ) = 0 /\ ( ( C - O ) G ( F - O ) ) = 0 ) ) |
|
6 | cevath.e | |- ( ph -> ( ( ( A - F ) G ( B - F ) ) = 0 /\ ( ( B - D ) G ( C - D ) ) = 0 /\ ( ( C - E ) G ( A - E ) ) = 0 ) ) |
|
7 | cevath.f | |- ( ph -> ( ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 ) ) |
|
8 | 2 | simp2d | |- ( ph -> B e. CC ) |
9 | 8 4 | subcld | |- ( ph -> ( B - O ) e. CC ) |
10 | 2 | simp3d | |- ( ph -> C e. CC ) |
11 | 10 4 | subcld | |- ( ph -> ( C - O ) e. CC ) |
12 | 9 11 | jca | |- ( ph -> ( ( B - O ) e. CC /\ ( C - O ) e. CC ) ) |
13 | 1 12 | sigarimcd | |- ( ph -> ( ( B - O ) G ( C - O ) ) e. CC ) |
14 | 2 | simp1d | |- ( ph -> A e. CC ) |
15 | 3 | simp1d | |- ( ph -> F e. CC ) |
16 | 14 15 | subcld | |- ( ph -> ( A - F ) e. CC ) |
17 | 14 4 | subcld | |- ( ph -> ( A - O ) e. CC ) |
18 | 11 17 | jca | |- ( ph -> ( ( C - O ) e. CC /\ ( A - O ) e. CC ) ) |
19 | 1 18 | sigarimcd | |- ( ph -> ( ( C - O ) G ( A - O ) ) e. CC ) |
20 | 13 16 19 | 3jca | |- ( ph -> ( ( ( B - O ) G ( C - O ) ) e. CC /\ ( A - F ) e. CC /\ ( ( C - O ) G ( A - O ) ) e. CC ) ) |
21 | 15 8 | subcld | |- ( ph -> ( F - B ) e. CC ) |
22 | 17 9 | jca | |- ( ph -> ( ( A - O ) e. CC /\ ( B - O ) e. CC ) ) |
23 | 1 22 | sigarimcd | |- ( ph -> ( ( A - O ) G ( B - O ) ) e. CC ) |
24 | 3 | simp3d | |- ( ph -> E e. CC ) |
25 | 10 24 | subcld | |- ( ph -> ( C - E ) e. CC ) |
26 | 21 23 25 | 3jca | |- ( ph -> ( ( F - B ) e. CC /\ ( ( A - O ) G ( B - O ) ) e. CC /\ ( C - E ) e. CC ) ) |
27 | 24 14 | subcld | |- ( ph -> ( E - A ) e. CC ) |
28 | 3 | simp2d | |- ( ph -> D e. CC ) |
29 | 8 28 | subcld | |- ( ph -> ( B - D ) e. CC ) |
30 | 28 10 | subcld | |- ( ph -> ( D - C ) e. CC ) |
31 | 27 29 30 | 3jca | |- ( ph -> ( ( E - A ) e. CC /\ ( B - D ) e. CC /\ ( D - C ) e. CC ) ) |
32 | 7 | simp2d | |- ( ph -> ( ( B - O ) G ( C - O ) ) =/= 0 ) |
33 | 7 | simp1d | |- ( ph -> ( ( A - O ) G ( B - O ) ) =/= 0 ) |
34 | 7 | simp3d | |- ( ph -> ( ( C - O ) G ( A - O ) ) =/= 0 ) |
35 | 32 33 34 | 3jca | |- ( ph -> ( ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 ) ) |
36 | 10 14 8 | 3jca | |- ( ph -> ( C e. CC /\ A e. CC /\ B e. CC ) ) |
37 | 24 15 28 | 3jca | |- ( ph -> ( E e. CC /\ F e. CC /\ D e. CC ) ) |
38 | 5 | simp3d | |- ( ph -> ( ( C - O ) G ( F - O ) ) = 0 ) |
39 | 5 | simp1d | |- ( ph -> ( ( A - O ) G ( D - O ) ) = 0 ) |
40 | 5 | simp2d | |- ( ph -> ( ( B - O ) G ( E - O ) ) = 0 ) |
41 | 38 39 40 | 3jca | |- ( ph -> ( ( ( C - O ) G ( F - O ) ) = 0 /\ ( ( A - O ) G ( D - O ) ) = 0 /\ ( ( B - O ) G ( E - O ) ) = 0 ) ) |
42 | 6 | simp3d | |- ( ph -> ( ( C - E ) G ( A - E ) ) = 0 ) |
43 | 6 | simp1d | |- ( ph -> ( ( A - F ) G ( B - F ) ) = 0 ) |
44 | 6 | simp2d | |- ( ph -> ( ( B - D ) G ( C - D ) ) = 0 ) |
45 | 42 43 44 | 3jca | |- ( ph -> ( ( ( C - E ) G ( A - E ) ) = 0 /\ ( ( A - F ) G ( B - F ) ) = 0 /\ ( ( B - D ) G ( C - D ) ) = 0 ) ) |
46 | 34 33 32 | 3jca | |- ( ph -> ( ( ( C - O ) G ( A - O ) ) =/= 0 /\ ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( B - O ) G ( C - O ) ) =/= 0 ) ) |
47 | 1 36 37 4 41 45 46 | cevathlem2 | |- ( ph -> ( ( ( B - O ) G ( C - O ) ) x. ( A - F ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( F - B ) ) ) |
48 | 8 10 14 | 3jca | |- ( ph -> ( B e. CC /\ C e. CC /\ A e. CC ) ) |
49 | 28 24 15 | 3jca | |- ( ph -> ( D e. CC /\ E e. CC /\ F e. CC ) ) |
50 | 40 38 39 | 3jca | |- ( ph -> ( ( ( B - O ) G ( E - O ) ) = 0 /\ ( ( C - O ) G ( F - O ) ) = 0 /\ ( ( A - O ) G ( D - O ) ) = 0 ) ) |
51 | 44 42 43 | 3jca | |- ( ph -> ( ( ( B - D ) G ( C - D ) ) = 0 /\ ( ( C - E ) G ( A - E ) ) = 0 /\ ( ( A - F ) G ( B - F ) ) = 0 ) ) |
52 | 32 34 33 | 3jca | |- ( ph -> ( ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 /\ ( ( A - O ) G ( B - O ) ) =/= 0 ) ) |
53 | 1 48 49 4 50 51 52 | cevathlem2 | |- ( ph -> ( ( ( A - O ) G ( B - O ) ) x. ( C - E ) ) = ( ( ( B - O ) G ( C - O ) ) x. ( E - A ) ) ) |
54 | 1 2 3 4 5 6 7 | cevathlem2 | |- ( ph -> ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |
55 | 47 53 54 | 3jca | |- ( ph -> ( ( ( ( B - O ) G ( C - O ) ) x. ( A - F ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( F - B ) ) /\ ( ( ( A - O ) G ( B - O ) ) x. ( C - E ) ) = ( ( ( B - O ) G ( C - O ) ) x. ( E - A ) ) /\ ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) ) |
56 | 20 26 31 35 55 | cevathlem1 | |- ( ph -> ( ( ( A - F ) x. ( C - E ) ) x. ( B - D ) ) = ( ( ( F - B ) x. ( E - A ) ) x. ( D - C ) ) ) |