| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cevathlem1.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
| 2 |
|
cevathlem1.b |
|- ( ph -> ( D e. CC /\ E e. CC /\ F e. CC ) ) |
| 3 |
|
cevathlem1.c |
|- ( ph -> ( G e. CC /\ H e. CC /\ K e. CC ) ) |
| 4 |
|
cevathlem1.d |
|- ( ph -> ( A =/= 0 /\ E =/= 0 /\ C =/= 0 ) ) |
| 5 |
|
cevathlem1.e |
|- ( ph -> ( ( A x. B ) = ( C x. D ) /\ ( E x. F ) = ( A x. G ) /\ ( C x. H ) = ( E x. K ) ) ) |
| 6 |
1
|
simp2d |
|- ( ph -> B e. CC ) |
| 7 |
2
|
simp3d |
|- ( ph -> F e. CC ) |
| 8 |
6 7
|
mulcld |
|- ( ph -> ( B x. F ) e. CC ) |
| 9 |
3
|
simp2d |
|- ( ph -> H e. CC ) |
| 10 |
8 9
|
mulcld |
|- ( ph -> ( ( B x. F ) x. H ) e. CC ) |
| 11 |
2
|
simp1d |
|- ( ph -> D e. CC ) |
| 12 |
3
|
simp1d |
|- ( ph -> G e. CC ) |
| 13 |
11 12
|
mulcld |
|- ( ph -> ( D x. G ) e. CC ) |
| 14 |
3
|
simp3d |
|- ( ph -> K e. CC ) |
| 15 |
13 14
|
mulcld |
|- ( ph -> ( ( D x. G ) x. K ) e. CC ) |
| 16 |
1
|
simp1d |
|- ( ph -> A e. CC ) |
| 17 |
2
|
simp2d |
|- ( ph -> E e. CC ) |
| 18 |
16 17
|
mulcld |
|- ( ph -> ( A x. E ) e. CC ) |
| 19 |
1
|
simp3d |
|- ( ph -> C e. CC ) |
| 20 |
18 19
|
mulcld |
|- ( ph -> ( ( A x. E ) x. C ) e. CC ) |
| 21 |
4
|
simp1d |
|- ( ph -> A =/= 0 ) |
| 22 |
4
|
simp2d |
|- ( ph -> E =/= 0 ) |
| 23 |
16 17 21 22
|
mulne0d |
|- ( ph -> ( A x. E ) =/= 0 ) |
| 24 |
4
|
simp3d |
|- ( ph -> C =/= 0 ) |
| 25 |
18 19 23 24
|
mulne0d |
|- ( ph -> ( ( A x. E ) x. C ) =/= 0 ) |
| 26 |
5
|
simp1d |
|- ( ph -> ( A x. B ) = ( C x. D ) ) |
| 27 |
5
|
simp2d |
|- ( ph -> ( E x. F ) = ( A x. G ) ) |
| 28 |
26 27
|
oveq12d |
|- ( ph -> ( ( A x. B ) x. ( E x. F ) ) = ( ( C x. D ) x. ( A x. G ) ) ) |
| 29 |
16 6 17 7
|
mul4d |
|- ( ph -> ( ( A x. B ) x. ( E x. F ) ) = ( ( A x. E ) x. ( B x. F ) ) ) |
| 30 |
19 11 16 12
|
mul4d |
|- ( ph -> ( ( C x. D ) x. ( A x. G ) ) = ( ( C x. A ) x. ( D x. G ) ) ) |
| 31 |
28 29 30
|
3eqtr3d |
|- ( ph -> ( ( A x. E ) x. ( B x. F ) ) = ( ( C x. A ) x. ( D x. G ) ) ) |
| 32 |
5
|
simp3d |
|- ( ph -> ( C x. H ) = ( E x. K ) ) |
| 33 |
31 32
|
oveq12d |
|- ( ph -> ( ( ( A x. E ) x. ( B x. F ) ) x. ( C x. H ) ) = ( ( ( C x. A ) x. ( D x. G ) ) x. ( E x. K ) ) ) |
| 34 |
18 8 19 9
|
mul4d |
|- ( ph -> ( ( ( A x. E ) x. ( B x. F ) ) x. ( C x. H ) ) = ( ( ( A x. E ) x. C ) x. ( ( B x. F ) x. H ) ) ) |
| 35 |
19 16
|
mulcld |
|- ( ph -> ( C x. A ) e. CC ) |
| 36 |
35 13 17 14
|
mul4d |
|- ( ph -> ( ( ( C x. A ) x. ( D x. G ) ) x. ( E x. K ) ) = ( ( ( C x. A ) x. E ) x. ( ( D x. G ) x. K ) ) ) |
| 37 |
33 34 36
|
3eqtr3d |
|- ( ph -> ( ( ( A x. E ) x. C ) x. ( ( B x. F ) x. H ) ) = ( ( ( C x. A ) x. E ) x. ( ( D x. G ) x. K ) ) ) |
| 38 |
16 17 19
|
mul32d |
|- ( ph -> ( ( A x. E ) x. C ) = ( ( A x. C ) x. E ) ) |
| 39 |
16 19
|
mulcomd |
|- ( ph -> ( A x. C ) = ( C x. A ) ) |
| 40 |
39
|
oveq1d |
|- ( ph -> ( ( A x. C ) x. E ) = ( ( C x. A ) x. E ) ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ( ( A x. E ) x. C ) = ( ( C x. A ) x. E ) ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( ( A x. E ) x. C ) x. ( ( D x. G ) x. K ) ) = ( ( ( C x. A ) x. E ) x. ( ( D x. G ) x. K ) ) ) |
| 43 |
37 42
|
eqtr4d |
|- ( ph -> ( ( ( A x. E ) x. C ) x. ( ( B x. F ) x. H ) ) = ( ( ( A x. E ) x. C ) x. ( ( D x. G ) x. K ) ) ) |
| 44 |
10 15 20 25 43
|
mulcanad |
|- ( ph -> ( ( B x. F ) x. H ) = ( ( D x. G ) x. K ) ) |