Step |
Hyp |
Ref |
Expression |
1 |
|
cevath.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
cevath.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
3 |
|
cevath.b |
|- ( ph -> ( F e. CC /\ D e. CC /\ E e. CC ) ) |
4 |
|
cevath.c |
|- ( ph -> O e. CC ) |
5 |
|
cevath.d |
|- ( ph -> ( ( ( A - O ) G ( D - O ) ) = 0 /\ ( ( B - O ) G ( E - O ) ) = 0 /\ ( ( C - O ) G ( F - O ) ) = 0 ) ) |
6 |
|
cevath.e |
|- ( ph -> ( ( ( A - F ) G ( B - F ) ) = 0 /\ ( ( B - D ) G ( C - D ) ) = 0 /\ ( ( C - E ) G ( A - E ) ) = 0 ) ) |
7 |
|
cevath.f |
|- ( ph -> ( ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 ) ) |
8 |
3
|
simp2d |
|- ( ph -> D e. CC ) |
9 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
10 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
11 |
8 9 10
|
3jca |
|- ( ph -> ( D e. CC /\ A e. CC /\ B e. CC ) ) |
12 |
9 4
|
subcld |
|- ( ph -> ( A - O ) e. CC ) |
13 |
8 4
|
subcld |
|- ( ph -> ( D - O ) e. CC ) |
14 |
12 13
|
jca |
|- ( ph -> ( ( A - O ) e. CC /\ ( D - O ) e. CC ) ) |
15 |
5
|
simp1d |
|- ( ph -> ( ( A - O ) G ( D - O ) ) = 0 ) |
16 |
1 14 15
|
sigariz |
|- ( ph -> ( ( D - O ) G ( A - O ) ) = 0 ) |
17 |
4 16
|
jca |
|- ( ph -> ( O e. CC /\ ( ( D - O ) G ( A - O ) ) = 0 ) ) |
18 |
1 11 17
|
sigaradd |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) = ( ( A - B ) G ( O - B ) ) ) |
19 |
1
|
sigarperm |
|- ( ( B e. CC /\ A e. CC /\ O e. CC ) -> ( ( B - O ) G ( A - O ) ) = ( ( A - B ) G ( O - B ) ) ) |
20 |
10 9 4 19
|
syl3anc |
|- ( ph -> ( ( B - O ) G ( A - O ) ) = ( ( A - B ) G ( O - B ) ) ) |
21 |
18 20
|
eqtr4d |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) = ( ( B - O ) G ( A - O ) ) ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) x. ( C - D ) ) = ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) ) |
23 |
9 10
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
24 |
8 10
|
subcld |
|- ( ph -> ( D - B ) e. CC ) |
25 |
23 24
|
jca |
|- ( ph -> ( ( A - B ) e. CC /\ ( D - B ) e. CC ) ) |
26 |
1 25
|
sigarimcd |
|- ( ph -> ( ( A - B ) G ( D - B ) ) e. CC ) |
27 |
4 10
|
subcld |
|- ( ph -> ( O - B ) e. CC ) |
28 |
27 24
|
jca |
|- ( ph -> ( ( O - B ) e. CC /\ ( D - B ) e. CC ) ) |
29 |
1 28
|
sigarimcd |
|- ( ph -> ( ( O - B ) G ( D - B ) ) e. CC ) |
30 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
31 |
30 8
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
32 |
26 29 31
|
subdird |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) x. ( C - D ) ) = ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) ) |
33 |
22 32
|
eqtr3d |
|- ( ph -> ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) = ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) ) |
34 |
10 30 9
|
3jca |
|- ( ph -> ( B e. CC /\ C e. CC /\ A e. CC ) ) |
35 |
6
|
simp2d |
|- ( ph -> ( ( B - D ) G ( C - D ) ) = 0 ) |
36 |
8 35
|
jca |
|- ( ph -> ( D e. CC /\ ( ( B - D ) G ( C - D ) ) = 0 ) ) |
37 |
1 34 36
|
sharhght |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) = ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) ) |
38 |
10 30 4
|
3jca |
|- ( ph -> ( B e. CC /\ C e. CC /\ O e. CC ) ) |
39 |
1 38 36
|
sharhght |
|- ( ph -> ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) = ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) |
40 |
37 39
|
oveq12d |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) = ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) ) |
41 |
9 30
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
42 |
8 30
|
subcld |
|- ( ph -> ( D - C ) e. CC ) |
43 |
1
|
sigarim |
|- ( ( ( A - C ) e. CC /\ ( D - C ) e. CC ) -> ( ( A - C ) G ( D - C ) ) e. RR ) |
44 |
41 42 43
|
syl2anc |
|- ( ph -> ( ( A - C ) G ( D - C ) ) e. RR ) |
45 |
44
|
recnd |
|- ( ph -> ( ( A - C ) G ( D - C ) ) e. CC ) |
46 |
4 30
|
subcld |
|- ( ph -> ( O - C ) e. CC ) |
47 |
46 42
|
jca |
|- ( ph -> ( ( O - C ) e. CC /\ ( D - C ) e. CC ) ) |
48 |
1 47
|
sigarimcd |
|- ( ph -> ( ( O - C ) G ( D - C ) ) e. CC ) |
49 |
10 8
|
subcld |
|- ( ph -> ( B - D ) e. CC ) |
50 |
45 48 49
|
subdird |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) x. ( B - D ) ) = ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) ) |
51 |
8 9 30
|
3jca |
|- ( ph -> ( D e. CC /\ A e. CC /\ C e. CC ) ) |
52 |
1 51 17
|
sigaradd |
|- ( ph -> ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) = ( ( A - C ) G ( O - C ) ) ) |
53 |
1
|
sigarperm |
|- ( ( C e. CC /\ A e. CC /\ O e. CC ) -> ( ( C - O ) G ( A - O ) ) = ( ( A - C ) G ( O - C ) ) ) |
54 |
30 9 4 53
|
syl3anc |
|- ( ph -> ( ( C - O ) G ( A - O ) ) = ( ( A - C ) G ( O - C ) ) ) |
55 |
52 54
|
eqtr4d |
|- ( ph -> ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) = ( ( C - O ) G ( A - O ) ) ) |
56 |
55
|
oveq1d |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) x. ( B - D ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) ) |
57 |
50 56
|
eqtr3d |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) ) |
58 |
33 40 57
|
3eqtrrd |
|- ( ph -> ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) ) |
59 |
10 4
|
subcld |
|- ( ph -> ( B - O ) e. CC ) |
60 |
1
|
sigarac |
|- ( ( ( B - O ) e. CC /\ ( A - O ) e. CC ) -> ( ( B - O ) G ( A - O ) ) = -u ( ( A - O ) G ( B - O ) ) ) |
61 |
59 12 60
|
syl2anc |
|- ( ph -> ( ( B - O ) G ( A - O ) ) = -u ( ( A - O ) G ( B - O ) ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) = ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) ) |
63 |
12 59
|
jca |
|- ( ph -> ( ( A - O ) e. CC /\ ( B - O ) e. CC ) ) |
64 |
1 63
|
sigarimcd |
|- ( ph -> ( ( A - O ) G ( B - O ) ) e. CC ) |
65 |
|
mulneg12 |
|- ( ( ( ( A - O ) G ( B - O ) ) e. CC /\ ( C - D ) e. CC ) -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) ) |
66 |
64 31 65
|
syl2anc |
|- ( ph -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) ) |
67 |
30 8
|
negsubdi2d |
|- ( ph -> -u ( C - D ) = ( D - C ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |
69 |
66 68
|
eqtrd |
|- ( ph -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |
70 |
58 62 69
|
3eqtrd |
|- ( ph -> ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |