| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cevath.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
| 2 |
|
cevath.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
| 3 |
|
cevath.b |
|- ( ph -> ( F e. CC /\ D e. CC /\ E e. CC ) ) |
| 4 |
|
cevath.c |
|- ( ph -> O e. CC ) |
| 5 |
|
cevath.d |
|- ( ph -> ( ( ( A - O ) G ( D - O ) ) = 0 /\ ( ( B - O ) G ( E - O ) ) = 0 /\ ( ( C - O ) G ( F - O ) ) = 0 ) ) |
| 6 |
|
cevath.e |
|- ( ph -> ( ( ( A - F ) G ( B - F ) ) = 0 /\ ( ( B - D ) G ( C - D ) ) = 0 /\ ( ( C - E ) G ( A - E ) ) = 0 ) ) |
| 7 |
|
cevath.f |
|- ( ph -> ( ( ( A - O ) G ( B - O ) ) =/= 0 /\ ( ( B - O ) G ( C - O ) ) =/= 0 /\ ( ( C - O ) G ( A - O ) ) =/= 0 ) ) |
| 8 |
3
|
simp2d |
|- ( ph -> D e. CC ) |
| 9 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
| 10 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
| 11 |
8 9 10
|
3jca |
|- ( ph -> ( D e. CC /\ A e. CC /\ B e. CC ) ) |
| 12 |
9 4
|
subcld |
|- ( ph -> ( A - O ) e. CC ) |
| 13 |
8 4
|
subcld |
|- ( ph -> ( D - O ) e. CC ) |
| 14 |
12 13
|
jca |
|- ( ph -> ( ( A - O ) e. CC /\ ( D - O ) e. CC ) ) |
| 15 |
5
|
simp1d |
|- ( ph -> ( ( A - O ) G ( D - O ) ) = 0 ) |
| 16 |
1 14 15
|
sigariz |
|- ( ph -> ( ( D - O ) G ( A - O ) ) = 0 ) |
| 17 |
4 16
|
jca |
|- ( ph -> ( O e. CC /\ ( ( D - O ) G ( A - O ) ) = 0 ) ) |
| 18 |
1 11 17
|
sigaradd |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) = ( ( A - B ) G ( O - B ) ) ) |
| 19 |
1
|
sigarperm |
|- ( ( B e. CC /\ A e. CC /\ O e. CC ) -> ( ( B - O ) G ( A - O ) ) = ( ( A - B ) G ( O - B ) ) ) |
| 20 |
10 9 4 19
|
syl3anc |
|- ( ph -> ( ( B - O ) G ( A - O ) ) = ( ( A - B ) G ( O - B ) ) ) |
| 21 |
18 20
|
eqtr4d |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) = ( ( B - O ) G ( A - O ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) x. ( C - D ) ) = ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) ) |
| 23 |
9 10
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 24 |
8 10
|
subcld |
|- ( ph -> ( D - B ) e. CC ) |
| 25 |
23 24
|
jca |
|- ( ph -> ( ( A - B ) e. CC /\ ( D - B ) e. CC ) ) |
| 26 |
1 25
|
sigarimcd |
|- ( ph -> ( ( A - B ) G ( D - B ) ) e. CC ) |
| 27 |
4 10
|
subcld |
|- ( ph -> ( O - B ) e. CC ) |
| 28 |
27 24
|
jca |
|- ( ph -> ( ( O - B ) e. CC /\ ( D - B ) e. CC ) ) |
| 29 |
1 28
|
sigarimcd |
|- ( ph -> ( ( O - B ) G ( D - B ) ) e. CC ) |
| 30 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
| 31 |
30 8
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
| 32 |
26 29 31
|
subdird |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) - ( ( O - B ) G ( D - B ) ) ) x. ( C - D ) ) = ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) ) |
| 33 |
22 32
|
eqtr3d |
|- ( ph -> ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) = ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) ) |
| 34 |
10 30 9
|
3jca |
|- ( ph -> ( B e. CC /\ C e. CC /\ A e. CC ) ) |
| 35 |
6
|
simp2d |
|- ( ph -> ( ( B - D ) G ( C - D ) ) = 0 ) |
| 36 |
8 35
|
jca |
|- ( ph -> ( D e. CC /\ ( ( B - D ) G ( C - D ) ) = 0 ) ) |
| 37 |
1 34 36
|
sharhght |
|- ( ph -> ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) = ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) ) |
| 38 |
10 30 4
|
3jca |
|- ( ph -> ( B e. CC /\ C e. CC /\ O e. CC ) ) |
| 39 |
1 38 36
|
sharhght |
|- ( ph -> ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) = ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) |
| 40 |
37 39
|
oveq12d |
|- ( ph -> ( ( ( ( A - B ) G ( D - B ) ) x. ( C - D ) ) - ( ( ( O - B ) G ( D - B ) ) x. ( C - D ) ) ) = ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) ) |
| 41 |
9 30
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
| 42 |
8 30
|
subcld |
|- ( ph -> ( D - C ) e. CC ) |
| 43 |
1
|
sigarim |
|- ( ( ( A - C ) e. CC /\ ( D - C ) e. CC ) -> ( ( A - C ) G ( D - C ) ) e. RR ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ph -> ( ( A - C ) G ( D - C ) ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ph -> ( ( A - C ) G ( D - C ) ) e. CC ) |
| 46 |
4 30
|
subcld |
|- ( ph -> ( O - C ) e. CC ) |
| 47 |
46 42
|
jca |
|- ( ph -> ( ( O - C ) e. CC /\ ( D - C ) e. CC ) ) |
| 48 |
1 47
|
sigarimcd |
|- ( ph -> ( ( O - C ) G ( D - C ) ) e. CC ) |
| 49 |
10 8
|
subcld |
|- ( ph -> ( B - D ) e. CC ) |
| 50 |
45 48 49
|
subdird |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) x. ( B - D ) ) = ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) ) |
| 51 |
8 9 30
|
3jca |
|- ( ph -> ( D e. CC /\ A e. CC /\ C e. CC ) ) |
| 52 |
1 51 17
|
sigaradd |
|- ( ph -> ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) = ( ( A - C ) G ( O - C ) ) ) |
| 53 |
1
|
sigarperm |
|- ( ( C e. CC /\ A e. CC /\ O e. CC ) -> ( ( C - O ) G ( A - O ) ) = ( ( A - C ) G ( O - C ) ) ) |
| 54 |
30 9 4 53
|
syl3anc |
|- ( ph -> ( ( C - O ) G ( A - O ) ) = ( ( A - C ) G ( O - C ) ) ) |
| 55 |
52 54
|
eqtr4d |
|- ( ph -> ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) = ( ( C - O ) G ( A - O ) ) ) |
| 56 |
55
|
oveq1d |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) - ( ( O - C ) G ( D - C ) ) ) x. ( B - D ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) ) |
| 57 |
50 56
|
eqtr3d |
|- ( ph -> ( ( ( ( A - C ) G ( D - C ) ) x. ( B - D ) ) - ( ( ( O - C ) G ( D - C ) ) x. ( B - D ) ) ) = ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) ) |
| 58 |
33 40 57
|
3eqtrrd |
|- ( ph -> ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) ) |
| 59 |
10 4
|
subcld |
|- ( ph -> ( B - O ) e. CC ) |
| 60 |
1
|
sigarac |
|- ( ( ( B - O ) e. CC /\ ( A - O ) e. CC ) -> ( ( B - O ) G ( A - O ) ) = -u ( ( A - O ) G ( B - O ) ) ) |
| 61 |
59 12 60
|
syl2anc |
|- ( ph -> ( ( B - O ) G ( A - O ) ) = -u ( ( A - O ) G ( B - O ) ) ) |
| 62 |
61
|
oveq1d |
|- ( ph -> ( ( ( B - O ) G ( A - O ) ) x. ( C - D ) ) = ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) ) |
| 63 |
12 59
|
jca |
|- ( ph -> ( ( A - O ) e. CC /\ ( B - O ) e. CC ) ) |
| 64 |
1 63
|
sigarimcd |
|- ( ph -> ( ( A - O ) G ( B - O ) ) e. CC ) |
| 65 |
|
mulneg12 |
|- ( ( ( ( A - O ) G ( B - O ) ) e. CC /\ ( C - D ) e. CC ) -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) ) |
| 66 |
64 31 65
|
syl2anc |
|- ( ph -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) ) |
| 67 |
30 8
|
negsubdi2d |
|- ( ph -> -u ( C - D ) = ( D - C ) ) |
| 68 |
67
|
oveq2d |
|- ( ph -> ( ( ( A - O ) G ( B - O ) ) x. -u ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |
| 69 |
66 68
|
eqtrd |
|- ( ph -> ( -u ( ( A - O ) G ( B - O ) ) x. ( C - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |
| 70 |
58 62 69
|
3eqtrd |
|- ( ph -> ( ( ( C - O ) G ( A - O ) ) x. ( B - D ) ) = ( ( ( A - O ) G ( B - O ) ) x. ( D - C ) ) ) |