| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cfub |  |-  ( cf ` (/) ) C_ |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } | 
						
							| 2 |  | 0ss |  |-  (/) C_ U. y | 
						
							| 3 | 2 | biantru |  |-  ( y C_ (/) <-> ( y C_ (/) /\ (/) C_ U. y ) ) | 
						
							| 4 |  | ss0b |  |-  ( y C_ (/) <-> y = (/) ) | 
						
							| 5 | 3 4 | bitr3i |  |-  ( ( y C_ (/) /\ (/) C_ U. y ) <-> y = (/) ) | 
						
							| 6 | 5 | anbi1ci |  |-  ( ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> ( y = (/) /\ x = ( card ` y ) ) ) | 
						
							| 7 | 6 | exbii |  |-  ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> E. y ( y = (/) /\ x = ( card ` y ) ) ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 |  | fveq2 |  |-  ( y = (/) -> ( card ` y ) = ( card ` (/) ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( y = (/) -> ( x = ( card ` y ) <-> x = ( card ` (/) ) ) ) | 
						
							| 11 | 8 10 | ceqsexv |  |-  ( E. y ( y = (/) /\ x = ( card ` y ) ) <-> x = ( card ` (/) ) ) | 
						
							| 12 |  | card0 |  |-  ( card ` (/) ) = (/) | 
						
							| 13 | 12 | eqeq2i |  |-  ( x = ( card ` (/) ) <-> x = (/) ) | 
						
							| 14 | 7 11 13 | 3bitri |  |-  ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> x = (/) ) | 
						
							| 15 | 14 | abbii |  |-  { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { x | x = (/) } | 
						
							| 16 |  | df-sn |  |-  { (/) } = { x | x = (/) } | 
						
							| 17 | 15 16 | eqtr4i |  |-  { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { (/) } | 
						
							| 18 | 17 | inteqi |  |-  |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = |^| { (/) } | 
						
							| 19 | 8 | intsn |  |-  |^| { (/) } = (/) | 
						
							| 20 | 18 19 | eqtri |  |-  |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = (/) | 
						
							| 21 | 1 20 | sseqtri |  |-  ( cf ` (/) ) C_ (/) | 
						
							| 22 |  | ss0b |  |-  ( ( cf ` (/) ) C_ (/) <-> ( cf ` (/) ) = (/) ) | 
						
							| 23 | 21 22 | mpbi |  |-  ( cf ` (/) ) = (/) |