Metamath Proof Explorer


Theorem cf0

Description: Value of the cofinality function at 0. Exercise 2 of TakeutiZaring p. 102. (Contributed by NM, 16-Apr-2004)

Ref Expression
Assertion cf0
|- ( cf ` (/) ) = (/)

Proof

Step Hyp Ref Expression
1 cfub
 |-  ( cf ` (/) ) C_ |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) }
2 0ss
 |-  (/) C_ U. y
3 2 biantru
 |-  ( y C_ (/) <-> ( y C_ (/) /\ (/) C_ U. y ) )
4 ss0b
 |-  ( y C_ (/) <-> y = (/) )
5 3 4 bitr3i
 |-  ( ( y C_ (/) /\ (/) C_ U. y ) <-> y = (/) )
6 5 anbi1ci
 |-  ( ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> ( y = (/) /\ x = ( card ` y ) ) )
7 6 exbii
 |-  ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> E. y ( y = (/) /\ x = ( card ` y ) ) )
8 0ex
 |-  (/) e. _V
9 fveq2
 |-  ( y = (/) -> ( card ` y ) = ( card ` (/) ) )
10 9 eqeq2d
 |-  ( y = (/) -> ( x = ( card ` y ) <-> x = ( card ` (/) ) ) )
11 8 10 ceqsexv
 |-  ( E. y ( y = (/) /\ x = ( card ` y ) ) <-> x = ( card ` (/) ) )
12 card0
 |-  ( card ` (/) ) = (/)
13 12 eqeq2i
 |-  ( x = ( card ` (/) ) <-> x = (/) )
14 7 11 13 3bitri
 |-  ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> x = (/) )
15 14 abbii
 |-  { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { x | x = (/) }
16 df-sn
 |-  { (/) } = { x | x = (/) }
17 15 16 eqtr4i
 |-  { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { (/) }
18 17 inteqi
 |-  |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = |^| { (/) }
19 8 intsn
 |-  |^| { (/) } = (/)
20 18 19 eqtri
 |-  |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = (/)
21 1 20 sseqtri
 |-  ( cf ` (/) ) C_ (/)
22 ss0b
 |-  ( ( cf ` (/) ) C_ (/) <-> ( cf ` (/) ) = (/) )
23 21 22 mpbi
 |-  ( cf ` (/) ) = (/)