Step |
Hyp |
Ref |
Expression |
1 |
|
cfub |
|- ( cf ` (/) ) C_ |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } |
2 |
|
0ss |
|- (/) C_ U. y |
3 |
2
|
biantru |
|- ( y C_ (/) <-> ( y C_ (/) /\ (/) C_ U. y ) ) |
4 |
|
ss0b |
|- ( y C_ (/) <-> y = (/) ) |
5 |
3 4
|
bitr3i |
|- ( ( y C_ (/) /\ (/) C_ U. y ) <-> y = (/) ) |
6 |
5
|
anbi1ci |
|- ( ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> ( y = (/) /\ x = ( card ` y ) ) ) |
7 |
6
|
exbii |
|- ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> E. y ( y = (/) /\ x = ( card ` y ) ) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
|
fveq2 |
|- ( y = (/) -> ( card ` y ) = ( card ` (/) ) ) |
10 |
9
|
eqeq2d |
|- ( y = (/) -> ( x = ( card ` y ) <-> x = ( card ` (/) ) ) ) |
11 |
8 10
|
ceqsexv |
|- ( E. y ( y = (/) /\ x = ( card ` y ) ) <-> x = ( card ` (/) ) ) |
12 |
|
card0 |
|- ( card ` (/) ) = (/) |
13 |
12
|
eqeq2i |
|- ( x = ( card ` (/) ) <-> x = (/) ) |
14 |
7 11 13
|
3bitri |
|- ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> x = (/) ) |
15 |
14
|
abbii |
|- { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { x | x = (/) } |
16 |
|
df-sn |
|- { (/) } = { x | x = (/) } |
17 |
15 16
|
eqtr4i |
|- { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { (/) } |
18 |
17
|
inteqi |
|- |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = |^| { (/) } |
19 |
8
|
intsn |
|- |^| { (/) } = (/) |
20 |
18 19
|
eqtri |
|- |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = (/) |
21 |
1 20
|
sseqtri |
|- ( cf ` (/) ) C_ (/) |
22 |
|
ss0b |
|- ( ( cf ` (/) ) C_ (/) <-> ( cf ` (/) ) = (/) ) |
23 |
21 22
|
mpbi |
|- ( cf ` (/) ) = (/) |